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Abstract

In the low energy domain of four-dimensional SU(2) Yang-Mills theory the spin and the

charge of the gauge field can become separated from each other. The ensuing field variables

describe the interacting dynamics between a version of the O(3) nonlinear σ-model and a

nonlinear Grassmannian σ-model, both of which may support closed knotted strings as stable

solitons. Lorentz transformations act projectively in the O(3) model which breaks global in-

ternal rotation symmetry and removes massless Goldstone bosons from the particle spectrum.

The entire Yang-Mills Lagrangian can be recast into a generally covariant form with a confor-

mally flat metric tensor. The result contains the Einstein-Hilbert Lagrangian together with

a nonvanishing cosmological constant, and insinuates the presence of a novel dimensionfull

parameter in the Yang-Mills theory.
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I. INTRODUCTION

Apparently the necessity of a mass gap in a pure Yang-Mills theory and the nature

of its particle spectrum were originally posed as problems by Wolfgang Pauli during a

1954 Princeton seminar by C.N. Yang [1]. However, despite over 50 years of effords

the physical particle content of a pure, interacting four dimensional Yang-Mills theory

remains a mystery. In particular, the explanation of color confinement is a theoretical

challenge [2]. Dimensional transmutation with its intimate relationship to the high

energy asymptotic freedom does open a door for a dimensionfull parameter to enter.

But since the high energy limit of the Yang-Mills theory describes asymptotically free,

massless gauge particles the precise relationship between this dimensionfull parameter

and the mass gap which secures confinement remains unclear.

During the last ten years [3]-[5] we have investigated the possibility that the low en-

ergy spectrum of pure Yang-Mills theory could comprise of closed and knotted strings

as stable solitons. This proposal is very natural from the point of view of QCD phe-

nomenology. If quarks are indeed confined by stringlike collective excitations of the gauge

field, in the absence of quarks these strings should close on themselves into stable and

in general knotted and linked configurations. In [5] we proposed how the properties of

such closed stringlike solitons could be related to the spectrum of the Yang-Mills theory.

In particular, we suggested that in the case of a SU(2) gauge theory the effective low

energy Lagrangian should relate to the following version of the O(3) nonlinear σ-model,

originally proposed by one of us [6]

Leff =
m2

2
(∂as)2 +

1

4
(s · ∂as× ∂bs)2 + V (s) (1)

Here s is a three-component unit vector, and m is a parameter with the dimensions of

mass. The last term is a potential term. It breaks the global O(3) symmetry which is

present in the first two terms, removing the two massless Goldstone bosons from the

spectrum. Both numerical simulations [7] and formal mathematical arguments [8] have

confirmed our proposal [9] that (1) does indeed support closed knotted strings as stable
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solitons.

Several approaches have been suggested, how to derive (1) directly from the Yang-

Mills theory. These derivations are commonly based on the following, incomplete Lie-

algebra expansion of the SU(2) gauge field [3]

Aa = Cas + ∂as× s + ρ∂as + σ∂as× s (2)

where ρ and σ are real scalars. The first two terms in (2) were originally introduced by

Duan and Ge [10], and subsequently by Cho [11], to describe the properties of Wu-Yang

monopoles. Indeed, this is a very natural decomposition of the gauge field in terms of

the SU(2) Lie algebra. When (2) is substituted to the Yang-Mills Lagrangian, one finds

that the structure (1) emerges after one-loop radiative corrections are taken into account

[12].

The apparent lack of off-shell completeness in (2) prompted us in [4] to propose

an alternative decomposition of the gauge field. This new decomposition is off-shell

complete, and (2) assumes a role in ensuring its manifest gauge covariance. Our new

decomposition leads to many unexpected consequences, some of which we shall reveal

in the present article. In particular, it admits a very intriguing physical interpretation:

The decomposition [4] is intimately related to the slave-boson decomposition [13] that

has been introduced independently in the context of strongly correlated electron systems

as an alternative to Cooper pairing and Higgs effect [14]. As a consequence our new

decomposition suggests that the separation between the spin and the charge could be

a general phenomenon that can be exhibited by a large variety of quantum fields [15],

[16].

A common feature of these spin-charge decompositions is that they all seem to in-

volve a real-valued scalar field. A nonvanishing ground state expectation value for this

scalar field describes a condensate. This corresponds to the density of the material en-

vironment, and the presence of a nontrivial condensate is a necessary condition for the

spin-charge decomposition to occur. The condensate can also yield an alternative to the

conventional Higgs effect [14].
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Here we find that in the case of SU(2) Yang-Mills theory the real-valued scalar field

admits another interpretation. It is the conformal scale of a metric tensor that describes

a conformally flat space-time. In terms of the spin-charge separated variables, the Yang-

Mills Lagrangian then contains both the Einstein-Hilbert Lagrangian and a cosmological

constant. Since conformal flatness is equivalent to the vanishing of the traceless Weyl

(conformal) tensor Wµνρσ, the gravitational contribution to the Yang-Mills Lagrangian

can be interpreted as the γ →∞ limit of the higher derivative gravitational Lagrangian

LEH =
1

κ

√
g R − Λ · √g + γ ·W 2

µνρσ (3)

It has been shown [17] that the Lagrangian (3) is part of a renormalizable higher deriva-

tive quantum theory of gravity. In particular, the one-loop β-function for γ does indeed

send this coupling to infinity in the short distance limit. This enforces asymptotically

the condition

Wµνρσ ∼ 0 (4)

Hence at short distances the space-time becomes asymptotically (locally) conformally

flat. We also note that the presence of the higher derivative Weyl tensor contribution

in (3) gives rise to a linearly increasing component in the large distance interactions.

Furthermore, our reformulation of the Yang-Mills theory in a manner that contains

the Einstein-Hilbert and cosmological constant terms has the additional peculiar conse-

quence that a novel dimensionfull parameter enters the Yang-Mills Lagrangian.

We start the present article by defining our notations. We then proceed to describe

the new decomposition [4] of the four dimensional SU(2) gauge field. This decomposition

singles out the Cartan direction of the SU(2) Lie algebra. This leaves us with a geometric

structure that involves the Grassmannian manifold G(4, 2) of two dimensional planes

that are embedded in a four dimensional space. The Grassmannian geometry guides our

subsequent decomposition of the gauge field into its spin and charge constituents. In

particular, it leads us to a O(3) symmetric order parameter, a three component internal

space unit vector field n akin the vector field s in (1).
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The Grassmannian structure also introduces an internal, compact U(1) gauge sym-

metry. In the context of lattice gauge theories [18] a compact U(1) gauge theory is

known to display a first-order phase transition between a strong coupling phase and a

weak coupling phase. The strong coupling phase exhibits confinement, which is absent

in the weak coupling phase.

It is quite natural to expect that in an abelian theory the gauge coupling decreases

when the distance increases. Thus the presence of the internal compact U(1) gauge

structure may explain why in short distance Yang-Mills theory the spin and the charge

can become strongly confined into asymptotically free and pointlike gauge particles, and

why the decomposition into independent spin and charge carriers can only occur in the

weakly coupled long-distance domain of the compact U(1) theory.

The internal U(1) gauge structure leads to a projective realization of the Lorentz

transformations in the O(3) unit vector n. The ensuing one-cocycle breaks the global

O(3) symmetry which is displayed by the first two terms in the corresponding Lagrangian

(1), even in the absence of an explicit symmetry breaking term such as the third term

in (1): Since the ground state of the theory can not violate Lorentz invariance, the

ground state direction of the vector n in the internal space becomes uniquely fixed. As

a consequence the requirement that the ground state is Lorentz invariant, removes the

two massless Goldstone bosons that are otherwise associated with the breaking of the

global O(3) symmetry in the dynamics of n.

We then proceed to inspect the detailed structure of the Yang-Mills Lagrangian in

terms of the separate spin and charge variables. In particular, we explain how the

Lagrangian (1) for the internal vector n is embedded in the tree-level Yang-Mills La-

grangian, even before any radiative corrections are taken into account. Since (1) supports

closed knotted strings as stable solitons [9], [7], [8], this endorses our proposal that knot-

ted and closed stringlike solitons are indeed the natural candidates for describing the

interacting spectrum of the pure SU(2) Yang-Mills theory [5].

It turns out that the functional form (1) relates both to the spin and the charge degree
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of freedom. This suggests the presence of some kind of dual structure between the spin

and charge variables in the Yang-Mills theory. Moreover, since the spin conventionally

relates to magnetism while the charge relates to electricity, this could be the sought-after

electric-magnetic duality of the Yang-Mills theory.

We then argue that our decomposition is independent of the way how we choose

the Cartan direction in the SU(2) Lie algebra. The gauge covariance becomes manifest

when we introduce the structure of (2) in our decomposed gauge field.

We show that in terms of the spin and the charge variables the entire Yang-Mills

Lagrangian admits a manifestly generally covariant form with a conformally flat metric

tensor. Thus the SU(2) Yang-Mills theory describes the interactions between (1) and

the G(4, 2) Grassmannian nonlinear σ-model in a conformally flat space-time. Both the

Einstein-Hilbert Lagrangian and a cosmological constant term are present. This also

introduces a dimensionfull parameter in the Yang-Mills theory, that becomes visible

only when it is realized in terms of the spin-charge separated variables.

Our result suggests the tantalizing possibility that long distance Einstein gravity

metamorphoses into a renormalizable Yang-Mills theory at short distances.

Finally, we analyze the finite energy content of the spin-charge separated, static

Yang-Mills theory using a Hamiltonian formulation. We find that closed knotted strings

can also be supported by the G(4, 2) nonlinear σ-model, in a manner that involves

the structure of (1). Furthermore, we propose that for finite energy configurations the

space-time R
4 becomes compactified into S

3 ×R
1.

We conclude by presenting some physical interpretations of our results, together with

suggestions on the directions for future research.
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II. SOME NOTATION

We consider a SU(2) Yang-Mills gauge field A = Aiaσ
idxa in R

4 (a, b, ... = 1, 2, 3, 4)

with Euclidean signature. The Lie algebra generators coincide with the standard Pauli

matrices σi (i, j, ... = 1, 2, 3) and we employ the complex combinations

σ± =
1

2
(σ1 ± iσ2) (5)

For the gauge field this gives

A = Aiaσ
idxa = Aaσ

3dxa +X+
a σ

−dxa +X−
a σ

+dxa (6)

where

X±
a = A1

a ± iA2
a

The finite gauge transformation is

A → gAg−1 + 2igdg−1 (7)

Note that in our notation the Yang-Mills coupling constant appears as a factor in front

of the Lagrangian.

For an infinitesimal group element

g = exp{ i
2
ǫ · σ} ≈ 1 +

i

2
ǫ̂+O(ǫ2)

the gauge transformation takes the form

δǫ̂A
i
a = δij∂aǫ

j + εijkAkaǫ
k

When the gauge transformation is in the direction of the Cartan subgroup UC(1) ∈
SU(2)

g ∼ h = e
i

2
ωσ3 ∈ UC(1) (8)

the component A3
a ∼ Aa transforms as a UC(1) gauge field

δhAa = ∂aω (9)
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For the off-diagonal X±
a we get

δhX
±
a = e∓iωX±

a (10)

Consequently, when we only consider gauge transformations in the direction of the Car-

tan subgroup, we can interpret the full SU(2) gauge field as a charged UC(1) vector

multiplet

Aia → (Aa, X
±
a )

Eventually we shall argue that even though we here introduce a particular (global)

identification of the Cartan UC(1) in terms of the Pauli matrices, our results are in-

dependent of this particular choice. However, for the clarity of presentation we shall

momentarily proceed with this choice of the Cartan direction in the SU(2) Lie-algebra.

Finally, the Yang-Mills field strength tensor is

F i
ab = ∂aA

i
b − ∂bAia + ǫijkAjaA

k
b

In terms of the charged UC(1) vector multiplet it decomposes according to

F 3
ab = ∂aAb − ∂bAa +

i

2
(X+

a X
−
b −X+

b X
−
a ) = Fab + Pab (11)

F±
ab = F 1

ab ± iF 2
ab = (∂a ± iAa)X±

b − (∂b ± iAb)X±
a = D±

AaX
±
b − D±

AbX
±
a (12)

Here the first term Fab in (11) is the UC(1) (Cartan) field strength tensor, and (12)

involves the UC(1) covariant derivatives D±
Ab of the charged vector fields X±

a . These

terms are clearly consistent with the UC(1) multiplet structure. The sole term that lacks

an obvious physical interpretation in terms of the UC(1) multiplet, is the antisymmetric

tensor Pab in (11). We now proceed to interpret it geometrically.

8



III. GRASSMANNIANS AND SPIN-CHARGE SEPARATION

We shall now interpret the antisymmetric tensor Pab in (11). Explicitely we have

Pab =
i

2
(X+

a X
−
b −X+

b X
−
a ) = A1

aA
2
b −A1

bA
2
a (13)

This is a real antisymmetric 4× 4 matrix that obeys the quadratic relation

P12P34 − P13P24 + P23P14 = 0 (14)

In fact, using simple linear algebra one can show that any real 4× 4 antisymmetric ma-

trix Pab that is subject to the condition (14) can always be represented in the functional

form (13) in terms of some two vectors A1
a and A2

b . In projective geometry the relation

(14) is known as the Klein quadric. It describes the embedding of the real Grassman-

nian G(4, 2) in the five dimensional projective space RP
5 as a degree four hypersurface.

This Grassmannian is the four dimensional manifold of two dimensional planes that are

embedded in R
4, and it can be identified with the homogeneous space

G(4, 2) ≃ SO(4)

SO(2)× SO(2)

It is convenient to describe the two dimensional planes in R
4 in terms of a zweibein.

For this we introduce an orthonormal doublet eαa (α = 1, 2)

eαae
β
a = δαβ

that spans a generic two dimensional plane in R
4. We can then represent the off-diagonal

components of the gauge field as

Aαa = Mα
βe
β
a

where Mα
β is a 2× 2 matrix. In terms of the complex combination

ea =
1√
2
(e1a + ie2a)

9



we have

eaea = 0

eaēa = 1
(15)

and we can write

X+
a = A1

a ± iA2
a = ψ1ea + ψ2ēa (16)

Here the ψα are two arbitrary complex functions, they are linear combinations of the

matrix elements of Mα
β .

When we substitute (16) into (13) we get

Pab =
i

2
(|ψ1|2 − |ψ2|2) · (eaēb − ebēa) =

i

2
· ρ2 · t3 · (eaēb − ebēa) (17)

We have here introduced the three component unit vector

t =
1

ρ2

(

ψ∗
1 ψ∗

2

)

σ





ψ1

ψ2



 =











cosφ · sin θ
sinφ · sin θ

cos θ











(18)

where we employ the following angular parametrization

ψ1 = ρ eiξ cos θ
2
e−iφ/2

ψ2 = ρ eiξ sin θ
2
eiφ/2

(19)

The representation (17) has a motivation in terms of the properties of Pab. For this

we consider the action of the general linear group GL(2,R) on the coordinates A1
a and

A2
a that describe our generic two-plane





A1
a

A2
a





G−→





α β

γ δ









A1
a

A2
a





Here

G =





α β

γ δ





10



is the matrix realization of the G ∈ GL(2,R) on the two-dimensional plane in R
4. This

gives

Pab
G−→ (αδ − βγ)Pab = det G · Pab

Thus Pab supports a one-dimensional representation of GL(2,R), where the orbit is

parametrized by the prefactor in (17)

|ψ1|2 − |ψ2|2 = ρ2 · t3

and the G-action corresponds to a scaling of the density ρ according to

ρ
G−→
√

det G · ρ (20)

Clearly, the volume and orientation preserving subgroup SL(2,R) ∈ GL(2,R) is an

invariance group of Pab. The maximal compact subgroup UI(1) ∈ SL(2,R) is the internal

invariance group of the decomposition (16). It acts on the fields according to

ea → e−iλea

ψ1 → eiλψ1

ψ2 → e−iλψ2

(21)

The vector t in (18) is invariant under the external UC(1) gauge transformation. The

component t3 is in addition invariant under the internal UI(1) gauge transformation. But

the remaining two components transform nontrivially under the internal UI(1). With

t± = t1 ± it2

the UI(1) transformation sends

t± =
1

2
(t1 ± it2) → e∓2iλt± (22)

where the factor of 2 reflects the fact that t is a bilinear in ψα.

A priori, the r.h.s. of the decomposition (16) involves a total of nine independent

field degrees of freedom. These are the four real components of the functions ψα and
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the five real components of the (complex) normalized vector ea. But due to the internal

UI(1) symmetry both sides of the decomposition (16) describe an equal number of eight

independent field degrees of freedom. This coincides with the number of independent

components in the off-diagonal gauge field and confirms that (16) yields a full, complete

field decomposition of the off-diagonal components Xa
µ of the gauge field.

According to (21) the complex scalar fields ψ1 and ψ2 are oppositely charged with

respect to the internal UI(1) gauge group. The vector field ea is also charged w.r.t. the

internal UI(1) group while Aa remains obviously intact under a UI(1) transformation.

The obvious choice of a UI(1) connection is the composite vector field

Ca = i ēb∂aeb (23)

as it transforms according to

Ca → Ca + ∂aλ

under the internal UI(1) transformation (21).

We note that in terms of the explicit parametrization (19), the UI(1) transformation

(21) sends

φ→ φ− 2λ

We also note that the connection (23) admits a geometric interpretation as a spin

connection that parallel transports the zweibein (e1a, e
2
a).

According to (8), the Cartan subgroup UC(1) of the SU(2) gauge group acts on the

complex coefficients as follows,

ψ1,2
h−→ e−iωψ1,2

or in terms of the parametrization (19)

ξ → ξ − ω

while ea remains intact. Consequently we can interpret the SU(2) gauge field as the

UC(1) multiplet

Aia ∼ (Aa, ψ1, ψ2, ea)
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where Aa is the UC(1) gauge field, the complex scalar fields ψα are equally charged w.r.t.

the UC(1), and the complex vector field ea is UC(1) neutral.

We can also interpret the gauge field as the UI(1) multiplet

Aia ∼ (Ca, ψ1, ψ2, Aa)

where Ca is the UI(1) gauge field, the complex scalar fields are oppositely charged w.r.t.

the UI(1) and the vector field Aa is UI(1) neutral.

Notice that the ψα are scalars and ea is a vector under SO(4) rotations (a.k.a. Lorentz

transformations) in R
4. Since ea is neutral under the UC(1) ∈ SU(2) gauge group

while the ψα transform nontrivially, we conclude that the decomposition (16) entails a

separation between the spin and the charge in the off-diagonal components X±
a of the

SU(2) gauge field. The spinless scalar fields ψα describe the UC(1) charge degrees of

freedom of the X±
a , and the UC(1) neutral vector field ea describes their spin degree of

freedom.

The present separation between the spin and the charge degrees of freedom in X±
a is

quite analogous to the slave-boson decomposition of an (nonrelativistic) electron, widely

employed in attempts to explain high-temperature superconductivity [14]. There, the

spin-charge separation is introduced as an alternative to the BCS superconductivity.

Instead of the Higgs effect in terms of the Cooper pairs, superconductivity emerges

when the analog of our variable ρ forms a condensate,

<vac| ρ |vac>= ∆ 6= 0 (24)
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IV. ELECTRIC AND MAGNETIC COMPONENTS

Consider the tensor part of Pab in (17),

Hab =
i

2
(eaēb − ebēa) (25)

We define its “electric” (pi) and “magnetic” (qi) components in the usual manner, by

setting

pi = H0i = i
2
(e0e

∗
i − eie∗0)

qi = 1
2
ǫijkHjk = i

2
ǫijkeje

∗
k

(26)

These two vectors are subject to the orthogonality relations

p · q = 0

p · p + q · q = 1
4

(27)

Together with the Poynting vector

s = p× q

we then have an orthogonal triplet in R
3.

The relation (26) can also be inverted, the result is

e =















e0

e1

e2

e3















= eiη





√
2|p|

2s+ip√
2|p|



 ≡ eiηê (28)

Here η is an overall phase of e. This phase is invisible to p and q since it does not

contribute to the bilinear combination (25). But this phase is subject to the internal

UI(1) gauge transformation (21) which sends

η → η − λ (29)

Thus the phase transformation (29) determines a rotation between the real and imagi-

nary components e1a and e2a of the complex vector ea in R
4.
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Now consider the action of SO(4) rotations (a.k.a. Lorentz transformations) on ea.

We are particularly interested in the effect of an infinitesimal SO(4) (Lorentz) boost in

a generic spatial direction εi. As a component of a four-vector, the ea should transform

in the following manner

Λε e0 = −εiei
Λε ei = −εie0

(30)

This is clearly a SO(4) rotation, it preserves the orthonormality relations (15).

On the other hand, we expect that when we realize this boost transformation on the

electric and magnetic components (26) we should get the familiar results

δε p = q × ε

δε q = p× ε
(31)

Curiously, we find that when we substitute this in the explicit realization (28) there is a

difference between (30) and (31): If we compare the action of Λε in (30) with the action

of δε on ea which is defined using (31) and (28), the two descriptions of the boost differ

from each other by the (infinitesimal) phase

(Λε − δε) ea = −iΘ(p, q; ε) · ea

As a consequence the difference between the two Lorentz boosts is a (infinitesimal) shift

in the angle η in (28) according to

η → η −Θ(p, q; ε)

This is an infinitesimal internal UI(1) gauge rotation (29).

Explicitely, we have

Θ(p, q; ε) =
p · ε
|p|2 = εi

∂

∂pi
ln |p| (32)

One can verify that this quantity obeys the one-cocycle condition

δε1Θ(p, q; ε2) − δε2Θ(p, q; ε1) = 0

15



and as a consequence (32) is a one-cocycle.

The result means that the action of the boost δε on the vector field ea determines

a projective representation of the (Euclidean) Lorentz group. In particular, the vector

field êa in (28)

ê = e−iηe

transforms under the projective representation according to

δεê = Λεê + iΘ ê

We conclude that the phase η in (28) is a non-trivial field degree of freedom. If we set

η = 0 in (28), a spatial boost will generate a nontrivial η determined by the one-cocycle

(32). Moreover, since the cocycle depends only on the electric component of (25) we

propose that η can be viewed as a phase (angular) variable for electric circulation.

Consider the internal UI(1) connection (23). It admits the following explicit realiza-

tion

Ca = i ē · ∂ae = i ˆ̄e · ∂a ê− ∂aη = 2|q| (k× l · ∂ak)− ∂aη = Ĉ a − ∂aη (33)

Here k and l are two mutually orthogonal unit vectors in the electric and magnetic

directions respectively,

p = |p|k = 1
2
√

2
cosϑ · k

q = |q|l = 1
2
√

2
sin ϑ · l

(34)

Since both k and l remain intact under both the external UC(1) and the internal UI(1)

gauge transformations we conclude that the vector field

Ĉ a = Ca + ∂aη = i ˆ̄e · ∂aê = 2|q| (k× l · ∂ak) =
2 p · ∂as

p2
(35)

is gauge invariant both under the external UC(1) and under the internal UI(1) gauge

transformations; The internal UI(1) acts only on the phase variable η in (33) according

to (29).
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If we introduce the normalization

ωa = − 1

2|q| Ĉa = −2k × l · ∂ak (36)

we arrive at

∂aωb − ∂bωa = l · ∂al× ∂bl (37)

This is the pull-back of the volume two-form on S
2 that also appears in the second

term of (1). As a consequence (36) admits the geometric interpretation as the Kirillov

one-form for the co-adjoint orbit S
2 = SU(2)/U(1), in the magnetic direction of l.

The result (37) follows directly from the formal properties of the unit vectors k and

l. Alternatively, it can be verified by using an explicit angular representation of these

vectors. If we denote by m the unit vector in the direction of the Poynting vector,

m = −k × l

we can represent the orthonormal triplet (k, l,m) as follows,

k = cos γ · ux + sin γ · uy

l = uz

m = − sin γ · ux + cos γ · uy

(38)

where

ux =











cosα cos β

sinα cosβ

− sin β











& uy =











− sinα

cosα

0











& uz =











cosα sin β

sinα sin β

cos β











(39)

We then have

AM = −1

4
ω = −1

2
(cosβ · dα+ dγ) (40)

and

FM = −1

4
dω = −1

2
sin β · dα ∧ dβ (41)

In (40) we recognize the connection one-form AM and in (41) the curvature two-form

FM (magnetic field) of the Dirac magnetic monopole.
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For (35) we get from (34)

Ĉ = −
√

2 sin ϑ · [cos β · dα + dγ] (42)

This vanishes when we go to the purely electric limit ϑ = 0, and coincides with (twice)

the Dirac monopole connection (40) when ϑ = π/4 and the strength of the electric and

magnetic fields are equal.
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V. A HIGGS EFFECT

The three components of the unit vector t that we have introduced in (18) are bilinear

in the complex functions ψ1 and ψ2. Since these functions are SO(4) a.k.a. Lorentz

scalars, the unit vector t is also a Lorentz scalar. But its components t± are not invariant

under the internal UI(1) gauge transformations.

If instead we introduce a new three component unit vector n such that

n±

n3

=

=

e2iηt±

t3

then this new unit vector is invariant under both the external UC(1) and the internal

UI(1) gauge transformations. Explicitely, in terms of the angular variables in (18) we

have

n =











cos(φ+ 2η) · sin θ
sin(φ+ 2η) · sin θ

cos θ











(43)

Here

φ+ 2η

is a UC(1)× UI(1) invariant combination of the UI(1) dependent variables φ and η.

In the sequel we shall propose that êa in (28), Ĉa in (35) and n are the obvious

UC(1) × UI(1) gauge invariant variables for describing the Yang-Mills theory. For this

we note that the relation (35) between Ca and Ĉa is a version of the familiar (linear)

Higgs relation between the U(1) gauge vector field and the gauge invariant (massive)

vector field in the standard abelian Higgs model:

In the case of conventional Higgs mechanism, a U(1) gauge field combines with the

gradient of the phase of a complex scalar field into a gauge invariant vector field. The

modulus of the complex scalar field remains as an additional, independent gauge invari-

ant field variable. When this modulus develops a nonvanishing ground state expectation

value the gauge invariant vector field becomes massive.
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Here, the UI(1) gauge field Ca combines similarly with the phase η of the complex

vector field ea into the gauge invariant vector field Ĉa. This leaves the vector field êa in

(28) as an additional independent and UI(1) invariant field variable. Furthermore, the

transition from t to the UI(1) invariant n can be viewed as a nonlinear version of the

Higgs mechanism. Note that all of these three UI(1) invariant field variables are also

invariant under the UC(1) gauge transformations.

We remind that due to the presence of the one-cocycle (32) the vector fields Ĉa and

êa are not SO(4) vectors. Nor are the ±-components of n scalars under SO(4). Instead,

all of these UI(1) gauge invariant quantities transform under a projective representation

of the spatial SO(4) (a.k.a. Lorentz) group.

The breaking of the Lorentz invariance by the one-cocycle has important physical

consequences. For this we note that the two components A1
a and A2

a of the SU(2) gauge

field appear symmetrically in the Yang-Mills Lagrangian, they can be exchanged by a

global gauge transformation. Consequently we can expect that in terms of the spin-

charge separated variables the Lagrangian should display a similar global symmetry

between the two complex scalar fields ψ1 and ψ2. This symmetry should translate into

a global O(3) rotation invariance when represented in terms of the unit vector n in

(43); See the first two terms in (1). But the presence of such a global O(3) symmetry

poses a problem. When we select a ground state direction of n we break the global

O(3) invariance explicitly, in a manner which in general leads to two a priori massless

Goldstone bosons.

The violation of Lorentz invariance by the one-cocycle appears to remove the Gold-

stone bosons: Since we have no reason to expect that the ground state of the theory

violates Lorentz invariance and since n3 is the sole Lorentz invariant component of n,

the only possible Lorentz invariant ground state direction for n is

n → ±











0

0

1











≡ ẑ
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Any nonvanishing ground state value for the components n± breaks Lorentz invariance

due to the presence of the one-cocycle.

In particular, we conclude that at large spatial distances the unit vector n should

become asymptotically parallel with the z-axis,

n
|x|→∞−→ ±ẑ (44)

Alternatively, in terms of the vector t the only UI(1) gauge invariant asymptotic ground

state direction is

t→ ±ẑ

since any other asymptotic direction violates the internal UI(1) gauge invariance.
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VI. YANG-MILLS IN GAUGE INVARIANT SPIN-CHARGE VARIABLES

We now proceed to inspect how the separation between the spin and the charge

manifests itself in the Yang-Mills Lagrangian. We start by recalling the tree-level gauge

fixed Euclidean space Yang-Mills Lagrangian

LYM =
1

4
(F i

ab)
2 +

ξ

2
|D+

AaX
+
a |2 + Lghost (45)

Note that we have here introduced a gauge fixing term only for the off-diagonal com-

ponents X±
a of the gauge field. For reasons that will eventually become transparent,

we do not introduce any gauge fixing term in the direction of the abelian subgroup

UC(1) ∈ SU(2). The last term Lghost denotes the ghost contribution. In the sequel its

explicit form will not be of importance to us. We only need to observe that it is entirely

independent of the gauge fixing parameter ξ [19], [20].

In our approach we do not introduce decomposed variables in the path integral. That

would only lead to unnecessary complications. Instead we propose that the appropriate

stage to implement the spin-charge separation is at the level of the effective Yang-Mills

action which has been computed in the covariant background field formalism. This

effective action accounts for all quantum fluctuations in the gauge field. But since its

explicit form is not available beyond a few leading terms in a loop expansion, we need

to resort to an indirect analysis.

By general arguments of gauge invariance we can expect that the full effective action

is a functional of the background field strength tensor F i
ab and its background covariant

derivatives. In the low momentum infrared limit we can ignore the derivative contribu-

tions, hence in this limit the effective action involves only the field strength tensor. Since

the full result is unknown to us, for simplicity we proceed by considering the infrared

limit only in its lowest order. This limit coincides with the classical Lagrangian (45), but

excluding the ghost contribution. Consequently our starting point will be the classical

Yang-Mills Lagrangian (45). Indeed, the classical Lagrangian should be an important

ingredient of the full quantum action. We now proceed to subject it to the separation
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between the spin and the charge.

When we introduce (11) and (12) we find for the classical Yang-Mills Lagrangian

LYM =
1

4
(F i

ab)
2 +

ξ

2
|D+

AaX
+
a |2

=
1

4
(Fab + 2ρ2n3Hab)

2 +
1

2
|D+

AaX
+
b |2 +

3

8
(1− n2

3)ρ
4 − 3

8
ρ4 +

ξ − 1

2
|D+

AaX
+
a |2 (46)

The reason why we present the third and fourth terms in (46) in this particular manner

becomes evident as we proceed.

Note that we have here overlooked a surface contribution that originates from the

difference

D+
AaX

+
b D−

AbX
−
a − D+

AaX
+
a D−

AbX
−
b

Explicitely, the surface contribution is

∂a

{

1

2

[

X+
a D−

AbX
−
b + X−

a D+
AbX

+
b

]

− 1

2
∂b(X

+
a X

−
b )

}

(47)

We first observe that in (46) there are two particularly interesting values for the gauge

fixing parameter ξ. These are the value ξ = 1, and the limit ξ →∞.

If we select ξ = 1 the last term in (46) becomes absent. In particular, when ξ = 1

there are no terms present in the Lagrangian barring the surface term, where the Lorentz

index in the off-diagonal components X±
a becomes contracted with the Lorentz indices

that are carried by the other quantities, such as the derivative operator ∂a. For ξ = 1

the Lorentz indices in X±
a are only contracted internally between different contributions

of the X±
a .

Since the ghost Lagrangian is independent of ξ, by arguments of gauge invariance we

expect that this property persists to all orders of perturbation theory. In particular we

expect that in the full ξ = 1 quantum effective action the Lorentz indices carried by the

(background) fields X±
a are only contracted internally, between different contributions

of X±
a . This indicates that we can (crudely) analyze the feasibility of the spin-charge
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separation by considering the Lagrangian (46), with ξ = 1 and ignoring the ghost con-

tributions. As a consequence we limit our interest to only the following four terms,

LYM =
1

4
(Fab + 2ρ2n3Hab)

2 +
1

2
|D+

AaX
+
b |2 +

3

8
(1− n2

3)ρ
4 − 3

8
ρ4 (48)

Similar conclusions can be drawn in the gauge that emerges when we send ξ → ∞.

In this limit we obtain in addition the maximal abelian gauge (MAG) condition

(∂a ± iAa)X±
a = D±

AaX
±
a = 0 (49)

It is known [19], [21] that this gauge condition is also the (Euler-Lagrange) variational

equation that describes the gauge orbit extrema of the following quantity,

R =

∫

d4x X+
a X

−
a (50)

In particular,

ρ2 = |ψ1|2 + |ψ2|2 = X+
a X

−
a

where ρ is the density that we have introduced in (19). Notice that with (49) the first

two terms in the surface contribution (47) vanish.

The variable ρ has an interpretation as a condensate; see (24). In the context of the

maximal abelian gauge this interpretation of ρ has been discussed widely in the literature

[19], [21]: The extrema values of ρ on the gauge orbit are obviously gauge invariant and

according to (50) correspond to gauge field configurations that are subject to the MAG

gauge condition (49) and we refer to [19], [21] for further discussion.

From (20) we also conclude that selecting the extrema value of ρ breaks the Grass-

mannian GL(2,R) into SL(2,R).

We now proceed to analyze the Lagrangian (48). In the present section our goal will

be to represent it in terms of the UC(1) × UI(1) gauge invariant variables. We shall

find that this can be achieved by a change of variables, with no need to any additional

explicit gauge fixing. This will justify a posteriori why in (45) we have introduced the

gauge fixing term only for the off-diagonal X±
a .
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We first consider the second term in (48). Using (18) we can write this term as

|D+
AaX

+
b |2 = |DC

Aaψ1|2 + |DC
Aaψ2|2 + ρ2|DC

Aaeb|2 +
1

2
ρ2t+(D̄C

A a
ēb)

2 +
1

2
ρ2t−(DC

Aaeb)
2 (51)

Here DC
Aa is the following UC(1)× UI(1) covariant derivative,

DC
Aaψ1 = (∂a + iAa − iCa)ψ1

DC
Aaψ2 = (∂a + iAa + iCa)ψ2

DC
Aaeb = (∂a + iCa)eb

Note that even though the t± are not invariant under the internal UI(1) gauge transfor-

mations (22), since DC
Aaeb transforms according to

DC
Aaeb → e−iλDC

Aaeb

the Lagrangian (51) is gauge invariant under both UI(1) and UC(1) gauge transforma-

tions.

We introduce the UC(1)× UI(1) invariant supercurrent [4], [22]

Ja =
i

2ρ2
{ψ∗

1D
C
Aaψ1 − ψ1D̄

C
Aaψ

∗
1 + ψ∗

2D
C
Aaψ2 − ψ2D̄

C
Aaψ

∗
2}

From this we can solve for Aa in favor of Ja. The result is

Aa = −Ja +
i

2ρ2
{ψ∗

1

←→
∂a ψ1 + ψ∗

2

←→
∂a ψ2}+ n3 · Ca

When we substitute this in (51) we get for the first two terms

|DC
Aaψ1|2 + |DC

Aaψ2|2 = (∂µρ)
2 +

1

4
ρ2(DĈ

an)2 + ρ2J2
a (52)

Here we have defined the covariant derivative operator

(DĈ
a)
ij = δij∂a + 2ǫij3Ĉa (i, j = 1, 2, 3) (53)

Note in particular that the middle term in the r.h.s. of (52) is Lorentz invariant even

though both the components n± and the connection Ĉa transform according to a pro-

jective representation of SO(4). The covariant derivative (53) compensates for the lack

of SO(4) invariance (a.k.a. Lorentz invariance) in the i = 1, 2 components of n.
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With (52) we have achieved our goal, in the sense that the r.h.s. of (52) involves only

quantities which are UC(1)× UI(1) invariant.

We now proceed to the third term in (51). For this we get

ρ2|(∂a + iCa)e|2 = ρ2|(∂a + iĈa)ê|2 =
ρ2

2
{(∂ap)2 + (∂aq)2}

=
ρ2

16

{

cos2 ϑ · (∂ak)2 + sin2 ϑ · (∂al)2 + (∂aϑ)2
}

(54)

Clearly, this involves only manifestly UC(1)× UI(1) invariant quantities.

We observe that there is the following apparent structural similarity between a con-

tribution to the second and third terms in the r.h.s. of (52), and the r.h.s. of (54),

(∂an)2 ↔ cos2 ϑ · (∂ak)2 + sin2 ϑ · (∂al)2

J2
a ↔ (∂aϑ)2

In [4] it has been suggested that this structural similarity can be interpreted in terms

of an electric-magnetic duality. Here we propose that it suggests a duality between the

spin and the charge.

The last two terms in (51) can also be represented in terms of UC(1) × UI(1) gauge

invariant variables as follows,

1

2
ρ2t+(DC

Aaēb)
2 =

1

2
ρ2n+(∂a ˆ̄eb)

2

=
1

128

ρ2n+

|s|2 < ∂a(p + q),p− q − 4
√

2 is > · < ∂a(p− q),p + q − 4
√

2 is > (55)

1

2
ρ2t−(DC

Aaeb)
2 =

1

2
ρ2n−(∂aêb)

2 =

=
1

128

ρ2n−
|s|2 < ∂a(p + q),p− q + 4

√
2 is > · < ∂a(p− q),p + q + 4

√
2 is > (56)
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Shortly we shall argue that these two terms admit a geometrical interpretation in the

Grassmannian framework. However, prior to this we consider the remaining contribu-

tions to the Yang-Mills Lagrangian.

We proceed with the first term in (51). When we eliminate Aa in favor of the super-

current Ja we get for this term

1

4
(Fab + 2ρ2t3Hab)

2 =
1

4
(Lab +Mab − n3Kab − 2ρ2n3Hab)

2 (57)

Here

Lab = ∂aJb − ∂bJa
Mab = 1

2
n ·DĈ

an× DĈ
bn

Kab = ∂aĈb − ∂bĈa

(58)

In particular, (57) and (58) involve only quantities which are explicitely UC(1) and UI(1)

invariant. The covariant derivative (53) ensures that all quantities are also independently

SO(4) (Lorentz) invariant.

We note that we can write the second and third terms in the r.h.s. of (57) as follows,

n3(∂aĈb − ∂bĈa)−
1

2
n ·DĈ

an× DĈ
bn = ∂a[n3Ĉb]− ∂b[n3Ĉa]−

1

2
n · ∂an× ∂bn (59)

The structure in (59) is reminiscent of the ’t Hooft tensor [23]. The last term is the

pull-back of the volume two-form on S
2, and if we introduce the corresponding Kirillov

one-form (36)

−1

2
n · ∂an× ∂bn = ∂aQb − ∂bQa

we can combine the first three terms in the r.h.s. of (57) into

Lab +Mab − n3Kab = ∂a(Jb − n3Ĉb −Qb)− ∂b(Ja − n3Ĉa −Qa)

In summary, when we combine our results we find that in terms of the spin-charge

separated variables the Yang-Mills Lagrangian has the following UC(1)×UI(1) invariant
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form

LYM =
1

4
F2
ab +

1

2
(∂aρ)

2 +
1

2
ρ2J2

a +
1

8
ρ2(DĈ

an)2 +
ρ2

4

{

(∂ap)2 + (∂aq)2
}

+
1

4
ρ2

{

n+(∂a ˆ̄eb)
2 + n−(∂aêb)

2
}

+
3

8
(1− n2

3)ρ
4 − 3

8
ρ4 (60)

where

Fab = ∂aJb − ∂bJa +
1

2
n · ∂an× ∂bn− {∂a(n3Ĉb)− ∂b(n3Ĉa)} − 2ρ2n3Hab

We find it noteworthy that the final Lagrangian (60) contains only UC(1) and UI(1)

invariant quantities, despite the fact that in (48) we have only introduced gauge fixing

for the off-diagonal components X±
a . In particular, the UC(1) ∈ SU(2) gauge invariance

has been eliminated explicitely by the introduction of gauge invariant variables. This

elimination of the UC(1)×UI(1) gauge invariance has been at the expense of introducing

variables Ĉa, ê and n± which transform according to a projective representation of the

SO(4) (Lorentz) group. However, in (60) these variables appear only in SO(4) invariant

combinations.

The final Lagrangian (60) has a very interesting structure. It describes the interacting

dynamics between a version of the O(3) nonlinear σ-model that one of us introduced in

[6] and the G(4, 2) Grassmannian nonlinear σ-model.

Clearly, the natural interpretation of the real scalar field ρ is in terms of a condensate.

Since ρ is a positive definite quantity we can expect that it develops the non-vanishing

ground state expectation value (24) that characterizes a material background in (60);

see [19], [21].

Due to the presence of the third term in (60), a nonvanishing ∆ in (24) leads to an

effective mass to the vector field Ja. As a consequence this vector field is subject to the

Meissner effect. If we assume that at large distances we can ignore the contribution from

Ja, the remaining Lagrangian involves only variables that describe a the present version

of the O(3) σ-model and the G(4, 2) Grassmannian non-linear σ-model.
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In the London limit where we replace ρ by its ground state expectation value (24), the

version of the O(3) nonlinear σ-model that has been embedded in (60) has the following

Lagrangian,

∆2

8
(DĈ

an)2 +
1

16

{

n · ∂an× ∂bn− 2 · { ∂a(n3Ĉb)− ∂b(n3Ĉa) }
}2

+
3

8
∆2(1− n2

3) (61)

This is in close resemblance with the effective Lagrangian (1), which we have proposed

previously could be an effective model for SU(2) Yang-Mills theory [3]-[5]. The difference

stems from the fact that here the ± components of the order parameter n lack Lorentz

invariance due to the one-cocycle (32). The Lorentz invariance of the Lagrangian is

restored by the presence of the similarly Lorentz invariance violating vector field Ĉa.

We note that the last term in (61) is an additional O(3) symmetry breaking potential

term. It is Lorentz invariant since n3 is the sole component of n that is a scalar under

Lorentz transformations.

The reason for the particular combination of the potential terms that we have in-

troduced in (46) (the third and fourth terms) becomes now obvious: This combination

ensures that the angular variable θ of n in the parametrization (43) acquires a positive

mass term. This choice still leaves the potential term involving only ρ with a negative

sign. Eventually, this sign will also find an explanation.

The original model (1) supports knotted closed strings as stable solitons. The version

(61) involves also the dynamical gauge field Ĉa that restores Lorentz invariance in the

present case. It would be very interesting to understand how the addition of this field

affects the soliton structure of the theory.

We now proceed to identify the G(4, 2) nonlinear σ-model that has been embedded

in (60). This embedding is determined by the kinetic term (54) that can be written as

|(∂a + iCa)e|2 =
ρ2

2

{

(∂ap)2 + (∂aq)2
}

This reveals the topological

G(4, 2) ∼ SO(4)

SO(2)× SO(2)
∼ S

2 × S
2

29



structure of the Grassmannian. We conclude that when we subject p and q to the two

conditions (27), these two three-component vector fields describe the four dimensional

Grassmannian manifold G(4, 2). Indeed, a priori the two vector fields p and q have six

independent components. But due to the two conditions (27) only four of the components

are independent, and correspond to coordinates on the four dimensional Grassmannian

manifold G(4, 2).

Now, we return to the two terms (55) and (56) which together with the last term in

(57) describe the coupling between the Grassmannian model and the O(3) model. We

argue that the Grassmannian contribution in the interaction terms (55) and (56) can be

identified as the (anti)holomorphic one-form on the complex manifold G(4, 2) ∼ S
2×S

2.

For this we introduce the explicit parametrization (38), (39). When we specify to the

magnetic limit where ϑ→ π/2 in (34) we find for the Grassmannian contribution in (55)

1

|s| · < ∂a(p+q),p−q−4
√

2 is >
ϑ→0−→ −2eiψ(l+im)·∂ak = −2eiψ(dβ+i sin βdα) (62)

This is the (unique) holomorphic one-form on the magnetic two-sphere described by k.

Similarly we find in the electric limit ϑ→ 0 that the Grassmannian contribution to (55),

(56) yields the (anti)holomorphic one-form on the electric two-sphere in G(4, 2) ∼ S
2×S

2

which is described by the unit vector l. These observations endorse our proposal that

the Grassmannian contributions in (55), (56) engage the holomorphic and the anti-

holomorphic one-forms on the complex manifold G(4, 2) ∼ S
2 × S

2.

Notice that in the interaction terms (55), (56) the phase ψ in (62) can be combined

with the phase of n± into

φ+ 2η → φ+ 2η + ψ

Finally, for the last term in (57) we have in the Lorentz invariant ground state where

n3 = ±1
1

4
(2ρ2n3Hab)

2 =
1

2
n2

3ρ
4 ≈ 1

2
ρ4
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When we compare this with the last term in (60) we conclude that despite the negative

sign of this term we have an overall stability of the theory.
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VII. GAUGE COVARIANCE

Our description of the spin-charge separation employs the Pauli frame (5), (6) that

identifies the diagonal matrix σ3 with the direction of the UC(1) subalgebra in the

SU(2) Lie algebra. We now proceed to show that the spin-charge separation is frame

independent, instead of σ3 we can select the direction of the Cartan subalgebra UC(1)

in SU(2) in an arbitrary and space-time dependent manner. For this we introduce an a

priori arbitrary g(x) ∈ SU(2) and perform the conjugation

σ3 g−→ g σ3g−1 def

= miσ
i = m̂

σ± g−→ g σ±g−1 def

= e±i σ
i def

=
1

2
(e1i ± ie2i )σi = ê±

Clearly, these matrices also satisfy the same algebra as (5), with m̂ the Cartan generator

[m̂, ê±] = ±2ê±

[ê+, ê−] = m̂

The gauge transformation (7) by the matrix g maps (6) onto

Aaσ
3 +X+

a σ
+ +X−

a σ
− → Aam̂ +X+

a ê+ +X−
a ê− + aam̂ +

1

2i
[∂am̂, m̂]

where

aa = −itr[σ3g−1∂ag ]

We interpret this connection in the following manner: We define

Aa = Aiaσi = (Aa + aa)m̂ +
1

2i
[∂am̂, m̂] = gAaσ

3g−1 + 2ig∂ag
−1 (63)

= Cam̂ +
1

2i
[∂am̂, m̂]

and

Xa = X i
aσ

i = X+
a ê+ +X−

a ê− = g(X+
a σ

+ +X−
a σ

−)g−1 (64)

Here Aa is the connection originally introduced by Duan and Ge [10], and subsequently

by Cho [11]; see also [3].

32



We introduce a generic h(x) ∈ SU(2) and redefine

g → gh

This determines a transformation under which A transforms as a connection

A → hAh−1 + 2ihdh−1

while X transforms as a tensor,

X → hX h−1

In (63), (64) we have superficially fourteen field degrees of freedom. These are the four

components of Ca, the eight components of X±
a and the two independent components

of m̂. However, if we impose the h-covariant condition [24]

D[A]ija X j
a = 0 (65)

this condition eliminates two of the field variables and we are left with only the twelve

independent components of a four dimensional SU(2) gauge field.

The condition (65) is a gauge covariant version of the maximal abelian gauge condition

(49). Explicitely, when we substitute (63) and (64) in (65) and use the identity

mi(δij∂a + ǫikjAka)X j
a = 0

we conclude that (65) is equivalent to the condition (49) for the original components

(Aµ, X
±
µ ). In particular, when we choose m̂ ≡ σ3 we find that (65) reduces to (49)

and we retain all our previous results. This confirms that our separation between the

spin and the charge in the Yang-Mills Lagrangian is gauge covariant, independent of the

direction of UC(1) in the SU(2) gauge group. Furthermore, the connection by Duan and

Ge and by Cho acquires a role in the gauge covariantization of our formalism.
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VIII. CONFORMAL GEOMETRY

The Yang-Mills Lagrangian has a number of attractive features that become trans-

parent when we present it in terms of the independent spin and charge variables. For

example, the Lagrangian can be related to a two-gap superconductor model [20], and ρ

admits also an independent interpretation as a gauge invariant condensate [19], [21].

Here we shall propose an alternative interpretation of the Yang-Mills Lagrangian. We

shall propose that ρ can be viewed as the conformal scale of a conformally flat metric

tensor, and (60) describes the coupling between matter fields and the Einstein-Hilbert

gravity in the presence of a nontrivial cosmological constant.

The version of the spin-charge separated Yang-Mills Lagrangian that we shall employ

is the following,

LYM = L
(1)
YM + L

(2)
YM + L

(3)
YM + L

(4)
YM

where

L
(1)
YM =

1

4

{

∂aJb − ∂bJa +
1

2
n ·DĈ

an× DĈ
bn− n3(∂aĈb − ∂bĈa)− 2ρ2n3Hab

}2

(66)

L
(2)
YM =

1

2
ρ2J2

a +
1

8
ρ2(DĈ

an)2 (67)

L
(3)
YM = ρ2|DC

Aaeb|2 +
1

2
ρ2t+(D̄C

Aaēb)
2 +

1

2
ρ2t−(DC

Aaeb)
2 (68)

L
(4)
YM =

1

2
(∂aρ)

2 +
3

8
(1− n2

3)ρ
4 − 3

8
ρ4 (69)

Our goal is to write these terms in a manifestly covariant manner, with the conformally

flat metric tensor

gµν =
( ρ

∆

)2

δµν (70)

Here ∆ is a constant with dimensions of mass: Since ρ has dimensions of mass we

need to introduce ∆ so that the components of the metric tensor acquire their correct
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dimensionality. The obvious choice is to identify ∆ with the vacuum expectation value

of the condensate ρ according to (24).

We introduce the vierbein

gµν = δabE
a
µE

b
ν (71)

where

δab = gµνEa
µE

b
ν

and the vierbein Ea
µ is given explicitely by

Ea
µ =

ρ

∆
δaµ

with

Ea
µEb

µ = δab

The Christoffel symbol of the metric (70) is

Γµνσ =
1

2
gµη(∂νgησ + ∂σgην − ∂ηgνσ) =

1

4
{ δµσδτν + δµν δ

τ
σ − δµτδνσ }∂τ ln

√
g (72)

where
√
g =

( ρ

∆

)4

The spin connection is defined by demanding covariant constancy of the vierbein,

∂µEa
ν + ΓνµλEa

λ − ω b
µ aEb

ν = 0

This gives

ω a
µ b = Ea

ν∇µEb
ν = Ea

ν(∂µEb
ν + ΓνµλEb

λ)

= −Ebν∇µE
a
ν = −Ebν(∂µEa

ν − ΓλµνE
a
λ)

(73)

In these relations we also indicate how the covariant derivative ∇µ acts on the vector

and co-vector fields.

Explicitely we get from the metric tensor (70), (71) for the spin connection

ω a
µ b =

1

4
{ δaµδbσ − δbd δdµ δacδcσ }∂σ ln

√
g
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We employ the vierbein Ea
µ and the complex Grassmannian zweibein (15) to intro-

duce the following complex zweibein eµ = Ea
µeaēµ = Ea
µe

∗
a

This zweibein is then normalized w.r.t. the metric gµν according to

gµνeµē∗ν = 1

gµνeµeν = gµν ē∗µē∗ν = 0

When we push forward the spin connection into

ω a
µ b → ω λ

µ ν = Ea
λ ω a

µ bE
b
ν

we can introduce the generally covariant version of the connection (23),

Cµ = iēσ(∂µeσ − Γλµσeλ + ω λ
µ σeλ) = iēσ∇µeσ + iēλω σ

µ λeσ (74)

and when we twist the covariant derivative operator with (74),

∇C
µ = ∇µ + iCµ (75)

we have an operator that parallel transports the zweibein.

We now proceed to employ this formalism to rewrite the Yang-Mills Lagrangian (66)-

(69) in a generally covariant manner. Our computations simplify considerably when we

observe that for the metric tensor (70)

∇µeν + ω λ
µ νeλ = ∂µeν − Γλµνeλ + ω λ

µ νeλ = ρ · ∂µ(
eν
ρ

)

and

Cµ = iēν∂µeν − i

4
∂µ ln

√
g

We start with the second and third term in (66), which we write in a generally

covariant form as follows,

1

2
n ·DĈ

an×DĈ
bn− n3(∂aĈb − ∂bĈa) →

1

2
n · ∇C

µn×∇C
νn− n3(∂µCν − ∂νCµ)
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We also write the last contribution in (66) as

−2ρ2n3Hab = −iρ2n3(eae
∗
b − ebe∗a) → −i∆ · n3(eµe∗ν − eνe∗µ) = −2∆ · n3Hµν

When we define

Fµν = ∂µJν − ∂νJµ +
1

2
n · {∇C

µn×∇C
νn− 2ẑ[(∂µCν − ∂νCµ) + 2∆ · Hµν ]}

where ẑ is a unit vector in the z-direction of the internal space, we conclude that we

can write the entire (66) in the following generally covariant form

L
(1)
YM → L(1)

YM =
1

4

√
ggµνgρσFµρFνσ (76)

Similarly we can write (67) in the following generally covariant form,

L
(2)
YM → L(2)

YM = ∆2 · √g gµν(JµJν +∇C
µn · ∇C

νn) (77)

We now proceed to (68). For this we send our flat space UI(1) covariant derivative of

the Euclidean metric Grassmannian zweibein to a generally covariant form as follows,

(∂a + iCa)eb → Ea
λ{δνλ∇C

µ + ω ν
µ λ}eν = Ea

λD ν
µ λeν

We have here introduced the following twisted covariant derivative

D ν
µ λ = δνλ∇C

µ + ω ν
µ λ

It extends the action of the twisted covariant derivative (75) to the vector fields eν .
With this, we can present the entire (68) in the following covariant form,

L
(3)
YM → L(3)

YM

= ∆2 · √g · gµνgλη
{

(D̄ σ
µ λēσ)(D κ

ν ηeκ) +
1

2
t+(D̄ σ

µ λēσ)(D̄ κ
ν ηēκ) +

1

2
t−(D σ

µ λeσ)(D κ
ν ηeκ)}

(78)
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Finally, we proceed to (69). We introduce the Riemann tensor in terms of the

Christofffel symbol (72)

R λ
µνσ = ∂νΓ

λ
µσ − ∂µΓλνσ + ΓηµσΓ

λ
ην − ΓηνσΓ

λ
ηµ

and the Ricci tensor

Rµν = Rνµ = R λ
µλν

and the Ricci scalar

R = R µ
µ

which transforms according to (in D dimensional space)

R → R̃ = φ−2{R−2(D−1)gµν∇µ∇ν lnφ− (D−2)(D−1)gµν(∇µ lnφ)(∇ν lnφ)} (79)

under the conformal scaling

gµν → g̃µν = φ2gµν

of the metric tensor. For the metric tensor (70) this leads to the identification

1

2
(∂µρ)

2 → 1

∆2

√
g R

This is the covariant interpretation of the first term in (69). For the remaining terms in

(69) (except for the surface term) we get from (70)

3

8
(1− n2

3)ρ
4 − 3

8
ρ4 → 1

∆2

3

8
(1− n2

3)
√
g − 1

∆2

3

8

√
g

and we conclude that the entire (69) can be presented in the following generally covariant

manner,

L
(4)
YM → L(4)

YM =
1

∆2

√
g R − 3

8

1

∆2

√
g +

3

8

1

∆2
(1− n2

3)
√
g (80)

Here the first contribution is the standard Einstein-Hilbert Lagrangian, the second is

the standard (negative) cosmological constant term, and the third gives a (in general)

space-time dependent correction to the cosmological constant when n3 6= ±1.
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Note that the sign of the Ricci scalar is consistent with the sign proposed in [25],

ensuring that the Euclidean Einstein-Hilbert Lagrangian is bounded from below.

We conclude by summarizing, that when we combine (76), (77), (78) and (80) we find

that in terms of the spin-charge separated variables the Yang-Mills Lagrangian can be

written in the following generally covariant form

LYM = L(1)
YM + L(2)

YM + L(3)
YM + L(4)

YM

Here

L(1)
YM =

1

4

√
ggµνgρσFµρFνσ

which has the standard form of the generally covariant Maxwell Lagrangian,

L(2)
YM = ∆2 · √g gµν(JµJν +∇C

µn · ∇C
νn)

is a generally covariant current-current interaction term,

L(3)
YM = ∆2·√g·gµνgλη

{

(D̄ σ
µ λēσ)(D κ

ν ηeκ) +
1

2
t+(D̄ σ

µ λēσ)(D̄ κ
ν ηēκ) +

1

2
t−(D σ

µ λeσ)(D κ
ν ηeκ)}

gives the kinetic term for the Grassmannian eµ together with two terms describing its

interaction with n where we recall that these interaction terms can be related to the

(anti)holomorphic one-forms on the Grassmannian. Finally,

L(4)
YM =

1

∆2

√
g R + −3

8

1

∆2

√
g +

3

8

1

∆2
(1− n2

3)
√
g

is the Einstein-Hilbert Lagrangian together with a cosmological constant with a space-

time dependent correction that vanishes in the ground state where n3 = ±1.

The final Lagrangian has a manifestly generally covariant form, and it coincides with

the spin-charge separated Yang-Mills Lagrangian (66)-(69) when we evaluate it using

the conformally flat metric tensor (70). Notice that from the present point of view the

nontriviality of the ground state expectation value in (24) becomes quite natural. When

ρ vanishes our conformal space-time just shrinks away.
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IX. STATIC LIMIT

It is often instructive to inspect the static limit of the Lagrangian, it gives an in-

dication on the ground state properties of the theory. We reach the static limit when

we only retain the spatial derivatives and set the time component of the vector field e

to zero. This sends ϑ → π/2 in (34), and as a consequence the electric vector field p

vanishes and the only non-vanishing contribution to the tensor field Hab is

Hij =
1

2
√

2
ǫijklk

where l is the unit vector in the magnetic direction. Furthermore, from (36), (37), (42)

we get

∂iĈ j − ∂jĈ i = − 1

2
√

2
l · ∂il× ∂jl

and

(∂iej)
2 =

1

16
· {( l + im) · ∂ik}2

With these, we get from (60) for the energy density in the static limit

Hstatic =
1

2
(∂iρ)

2 +
1

2
ρ2J2

i +
1

8
ρ2(DĈ

i n)2 +
1

32
ρ2(∂il)

2 (81)

+
1

64
ρ2

{

n+ e
−2iψ ( [ l + im] · ∂ik)2 + n− e

2iψ ( [ l− im] · ∂ik)2
}

(82)

+
1

4
F2
ij +

3

8
(1− n2

3)ρ
4 − 3

8
ρ4 (83)

Here

Fij = ∂iJj − ∂jJi +
1

2
n ·DĈ

i n×DĈ
jn + n3

1

2
√

2
{ l · ∂il × ∂jl − 2ρ2ǫijklk} (84)

From this we can draw the following conclusions:

There is an apparent duality between the internal vector field n and the space-valued

vector field l. In particular, both are embedded in (81)-(83) in a manner that employs

the version (1) of the O(3) nonlinear σ-model. As a consequence both n and l have

the potential of supporting closed knotted strings as stable solitons. It is suggestive to
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interpret l as a “magnetic” order parameter, and n as an “electric” order parameter in

the static limit [4].

The vector field n takes values in the internal space. Due to the one-cocycle (32)

in the Lorentz transformations, it has a unique rotation invariant ground state value at

large distances which is given by (44). But l is a space valued vector field, it transforms

as a vector under spatial SO(3) rotations. Consequently its only conceivable asymptotic

ground state value at large distances is the spherically symmetric

l
r→∞−→ x

r

From this we get the asymptotic behaviour

l · ∂il × ∂jl r→∞−→ ǫijk
xk

r3
∼ 1

r2
ǫijklk

for the third contribution to (84). Note that this is reminiscent of a magnetic monopole.

We combine the last two terms in (84) asymptotically into

l · ∂il× ∂jl − 2ρ2ǫijklk
r→∞−→ (

1

r2
− 2ρ2)ǫijk

xk

r
(85)

We now make the following proposals: For a finite energy, we can expect that each

of the positive definite terms in the static Hamiltonian are integrable. This means that

asymptotically at large distances, in an analytic power expansion in r we can expect

ρ(r) . O(
1

r
)

In terms of the four dimensional metric tensor (70) this suggests that for finite energy

the space should be compact. But from the present static point of view we can also argue

as follows. We consider the space-time to have the topology ofM×R
1 whereM is the

three dimensional space manifold and R
1 is the time. If we define the three-dimensional,

spatial metric tensor by setting

g
(3)
ij =

ρ4

∆4
δij (86)
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we find that some of the terms in the energy density admit an independent, three di-

mensional geometric interpretation: From (79), the first term in the r.h.s. of (81) can

be written in terms of the three dimensional Ricci scalar as

1

2
(∂iρ)

2 =
1

80

1

∆2

√

g(3)R(3)

The second term can be written as

1

2
ρ2J2

i =
1

2

√

g(3) g(3) ikJiJk

Similarly we conclude that each of the terms in (81) and (82) admit a generally covariant

interpretation in terms of the present three dimensional conformal geometry.

For the terms in (83) the present three dimensional geometric interpretation appears

to fail. But when we demand that the quadratic terms are independently integrable,

since the asymptotic behaviour of n is dictated by (44) we can argue that it becomes

very natural to expect that asymptotically the two terms in (85) cancel each other. This

suggests that at large distances we have

ρ2 ∼ 1

2

1

r2 + λ2

where λ is some parameter. When we substitute this in (86) we find that the spatial

part of our space-time becomes asymptotically compactified into the sphere S
3. It would

be very interesting if this proposal could be made more rigorous.
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X. SUMMARY

We conclude our article with a summary of our results and a number of remarks on

their possible physical consquences.

We have introduced a novel, complete field decomposition in the Yang-Mills La-

grangian. The decomposition implements a separation between the spin and the charge

in the gauge field. The decomposition also introduces an internal, compact U(1) in-

teraction. A compact U(1) gauge theory is known to exhibit confinement in a strong

coupling domain which is separated from a weakly coupled and deconfined domain by

a first order phase transition. Since the coupling in an abelian theory should increase

when the distance scale decreases, the spin-charge separation is not in an apparent con-

flict with the high energy limit of the Yang-Mills theory, represented by asymptotically

free and massless gauge bosons.

The spin-charge separated Yang-Mills Lagrangian describes the interacting dynam-

ics between a version [6] of the O(3) nonlinear σ-model and a G(4, 2) Grassmannian

nonlinear σ-model, in a conformally flat spacetime and in the presence of both the

Einstein-Hilbert Lagrangian and a negative cosmological constant term.

The conformal scale of the metric coincides with the gauge invariant condensate that

has been studied previously in [19], [21]. Numerical lattice studies indicate that the

ground state value (24) of the condensate is nonvanishing. From our geometrical point

of view this is an expected result: If the conformal scale vanishes there is no space-time.

The metric properties of the classical Yang-Mills theory are consistent with the short

distance limit of a renormalizable higher derivative gravitation theory with a Lagrangian

of the form (3). It would be truly exciting if at short distance Einstein gravity metamor-

phoses into a Yang-Mills theory, as a single renormalizable quantum theory of material

interactions.

The presence of the higher derivative term in (3) gives rise to a linearly increasing

component in the large distance gravitational interaction. From the point of view of

the Yang-Mills theory this may have some obvious advantages. However, at distance
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scales which are well beyond those that should be described by the Yang-Mills theory

as such, it may become desirable for the β-function of the coupling γ in (3) to force this

coupling to flow towards γ = 0. Such a large distance behaviour in the quantum theory

would then leave the conventional Einstein gravity as the sole surviving very long range

component of the spin-charge separated Yang-Mills theory.

Note that since γ flows towards γ →∞ at short distances, the asymptotic condition

(4) dissolves the massless modes of the Einstein gravity from the (not too) short distance

spectrum. This leaves us with a gapped and spin-charge separated Yang-Mills theory

that describes asymptotically free gauge vectors as distance scale goes to zero.

Our results suggest that due to fluctuations in the gauge invariant condensate ρ

and the vector field n, at short distances both Newton’s constant and the cosmological

constant become variable.

The version of the O(3) nonlinear σ model that embeds the vector field n in the Yang-

Mills Lagrangian, essentially coincides with (1). This Lagrangian is known to describe

knotted strings as stable solitons. Our results then support the proposal [3]-[5] that such

strings are present in the spectrum of the SU(2) Yang-Mills theory.

In the absence of the potential term in (1), the spectrum of the O(3) model contains

two massless Goldstone bosons. These bosons originate from the asymptotic breaking of

the global O(3) symmetry, when we select the large distance direction for the unit vector

s. In the case of the Yang-Mills theory, these massless Goldstone bosons are removed

by the one-cocycle that breaks the Lorentz invariance of the pertinent order parameter

n. The requirement that the large distance ground state is Lorentz invariant uniquely

fixes the asymptotic direction of the order parameter.

The spin-charge separated Yang-Mills theory also describes the G(4, 2) Grassmannian

nonlinear σ-model. The S
2 × S

2 structure of the G(4, 2) manifold has an interpretation

in terms of electric and magnetic variables, the two spheres S
2 are related to each other

by an electric-magnetic duality. In terms of the corresponding unit vector fields, the

Grassmannian contribution to the Yang-Mills Lagrangian admits a very transparent
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realization. In particular, in the static (magnetic) limit we are left with only one three-

component unit vector field l, pointing in the magnetic direction. This vector field

is embedded in the Yang-Mills Lagrangian by a version of the Lagrangian (1). Conse-

quently we have an additional duality between two different embeddings of (1), described

by n and l respectively. In particular, this means that the vector field l has also the

potential of supporting closed knotted strings as stable solitons.

The interaction between the O(3) σ-model and the Grassmannian σ model involves

the (anti)holomorphic one-forms on the Grassmannian manifold. These appear in a com-

bination with the n± components of the vector field n. The presence of the one-cocycle

in the Lorentz transformation of n implies that at large distances these interaction terms

are absent.

Finally, we have argued that demanding finiteness of energy in the Yang-Mills theory

enforces a compactification of the space. We have proposed that it is natural for the

asymptotic topology of the space-time to coincide with that of the manifold S
3 × R

1.
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