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SEPARATION OF SCATTERING AND SELFACTION

REVISITED

L. D. FADDEEV

Abstract. The definition of scattering operator in Quantum Field
Theory is critically reconsidered. The correct treatment of one-
particle states is connected with separation of selfaction from in-
teraction. The formalism of functional integral is used for the
description of such a separation via introduction of the quantum
equation of motion.

When I got invitation to contribute to the volume, dedicated to
anniversary of Lev Lipatov I immediately agreed. One reason is evident
— I highly respect Lev for his dedication to Quantum Field Theory,
deep intuition and fantastic technical skill. The second is the planned
title of this volume — “Subtleties of QFT”. So I decided to popularize
one aspect of QFT which is not widely known. It is connected with
definition of scattering.
When I was learning QFT in the end of 50-ties of previous century,

the scattering operator was defined by famous formula

S = lim
t′′→∞
t′→−∞

eiH0t
′′

e−iH(t′′−t′)e−iH0t
′

with introduction of the interaction representation together with adi-
abatic limit, and use of the Wick theorem. Derivation of Feynman
diagrams by Dyson [1] via these means was most popular. The infini-
ties appearing in calculation were dealt with by renormalization and
divergence of mass and charge were treated on the same footing.
With some experience in quantum theory of scattering I was some-

what unhappy. Indeed, I already knew, that for the limit such as above
the continuous spectra of H0 and H were to coincide, like it happens
in scattering on potential where

H = −
1

2m
∆+ v(x) = H0 + V

with v(x) vanishing at large distances. On the other hand everybody
knows, that perturbation shifts discrete spectrum.
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In relativistic field theory discrete spectrum appears for the one-
particle states when we consider subspace of fixed momentum

Pψ = pψ.

The eigenvalue of free energy has the form

H0ψ0 =
√

p2 +m2ψ0.

Interaction shifts this eigenvalue: it follows from relativistic invariance
that corresponding one particle state of full hamiltonian has eigenvalue

Hψ =
√

p2 +M2ψ,

where M is physical mass of corresponding particle. Thus the mass
renormalization is not prompted by divergence: it is a necessary step
to use the correct spectrum.
In a short note [2] I proposed a method to realize the selfaction,

leading to construction of proper one-particle states before considering
scattering. Recently I presented this method in my Princeton Lectures
[3], directed to mathematicians learning QFT, with rather limited suc-
cess.
In [2] I considered many body Hamiltonian of general form

H =

∫

ω(k)a∗(k)a(k)dk+

+
∑

m,n

∫

vmn(k1 . . . km, k
′
1 . . . k

′
n)a

∗(k1) . . . a
∗(kn)a(k

′
1) . . . a(k

′
n)

δ(k1 + . . .+ km − k′1 . . .− k′n)dk1 . . . dkmdk
′
1 . . . dk

′
n.

Terms of the type vm0, m = 1, . . ., vm1, m = 2, . . . shift vacuum state Ω
and one particle states a∗(k)Ω of perturbed hamiltonian. My proposal
was to consider transformed hamiltonian

Hscatt = RHR−1,

where R is chosen to cancel the dangerous terms mentioned above.
In calculation of R one encounters denominators of type

∑

l ω(kl) and
∑

l ω(kl)− ω(k), which do not vanish if the condition of stability

ω(k1) + ω(k2) > ω(k1 + k2)

is imposed. Thus no zero denominators, leading to imaginary parts,
appear.
The alternative interpretation of this trick is that one uses the same

H , but with operators

b(k) = Ra(k)R−1, b∗(k) = Ra∗(k)R−1
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defining the representation of canonical commutation relations, differ-
ent from original ones. In terms of these operators the Hamiltonian
acquires the form

H =

∫

ω̂(k)b∗(k)b(k)dk +
∑

m,n≥2

V̂mn,

where one-particle energy ω̂(k) differs from ω(k) and terms Vm0, V0n,
Vm1, V1n in interaction are absent. For such Hamiltonian the scattering
operator S from the above definition exists.
The main defect of my method was its nonrelativistic nature. Here

I use an opportunity to deliver an alternative approach which is mani-
festly Lorentz invariant. No doubt I shall use the Feynman functional
integral and treat it in a variant of the background field method [4],
[5], [6].
The S-matrix is defined as a limit of the transition operator

U(ϕ′′(x′′, t′′), ϕ′(x′, t′)) =

∫

exp
i

~
St′′

t′ (ϕ)
∏

x,t′<t<t′′

dϕ

with prescribed asymptotics of initial and final configurations when
t′ → −∞, t′′ → ∞.
Here St′′

t′ (ϕ) is corresponding action functional. Calculations in the
background method begin with ansatz

(1) ϕ = ϕph +
√
~χ,

where ϕph and χ satisfy the asymptotic conditions and appropriate
radiation condition, correspondingly.
Usually ϕph is taken to satisfy the classical equations of motion

δS

δϕ

∣

∣

∣

ϕ=ϕph
= 0

with given asymptotic conditions. This would be in spirit of adia-
batic approach, used in Dyson method. My main statement is that
this proposal is too naive and should be modified to take into account
selfaction.
To make my proposal more explicit consider the case of scalar field

ϕ(x) with action

S =
1

2

∫

[(∂µϕ)
2 −m2ϕ2 − V (ϕ)]dx

(Since I do not believe in the nontriviality of the most popular case
V (ϕ) = λϕ4 for λ > 0, I take this example only for formal illustration;
another possibility is to take case of YM, as it is discussed in [7], but
vector indexes will distract us from the main point).
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Under ansatz (1) we get

1

~
S(ϕ) =

1

~
S(ϕph) +

1
√
~

∫

V1(ϕ
ph)χ(x)dx+

+
1

2

∫

(χ(x)Mχ(x))dx +
√
~

∫

V3(ϕ
ph)χ3dx+ ...,

where

V1(ϕ
ph) = (�+m2)ϕph +

δV

δϕ

∣

∣

∣

ϕ=ϕph

is LHS of classical equation of motion, linear differential operator M ,
defining the quadratic form, is given by

Mχ = �χ +m2χ+
δ2V

δϕ2

∣

∣

∣

ϕ=ϕph
χ

and V3 etc. are given by higher derivatives of V at ϕ = ϕph.
The Gaussian formal calculation of the functional integral gives

U = exp
{ i

~
S(ϕph)−

1

2
ln detM +

∑

closed diagrams
}

,

where diagrams are constructed via vertices

V1 = , V3 = , V4 =

connected by line G(x, y) = , which is a Green function of oper-
ator M , uniquely defined due to the appropriate radiation conditions,
imposed on χ. The first examples are

a b c d e

We shall distinguish weakly connected and strongly connected di-
agrams. The diagrams of the first type can be separated in two by
cutting one line. The diagrams a, b, e in the fig.1 are weakly con-
nected. It is clear that contribution of such diagram is given by

∫

Γ1(x)G(x, y)Γ2(y)dx dy,

where each factor can be depicted as a diagram with one external line.
The examples, corresponding to diagrams a, b, e look as follows

, .
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The first, as was already stated, is the LHS of the classical equation of
motion. Now we formulate the main proposal: The background field
ϕph is to be taken as solution of equation

+ = 0,

where the bubble is sum of strongly connected diagrams. I propose
to call this condition quantum equation of motion. We can presume,
that the solution is uniquely defined by asymptotic conditions as it
was supposed in the case of classical equation of motion. This must be
argued for as now this equation is nonlocal.
As soon as the ϕph is chosen via quantum equation of motion the

functional transition amplitude acquires the form

1

i
lnU =W (ϕph) =

1

~
S(ϕph)−

1

2i
ln detM

+
∑

closed strongly connected diagrams

and the last series contains terms of order
√
~ and higher.

Our receipt explicitly takes into account the selfaction effects. In
particular quantum equation of motion produce shift of mass for free
particle, parameterizing the asymptotic behaviour of solutions.
I finish this methodological exposition by two comments
1. The role of classical solutions, in particular of instantons, should

be carefully reconsidered.
2. Quantum equations could have soliton solutions, which are absent

in the classical limit. In particular, it is not completely crazy idea
that quantum Yang-Mills equations have soliton-like solutions due to
the dimensional transmutation. The concrete proposal for that are
discussed in [8]–[9].
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