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1 Introduction

The lectures by L.D. Faddeev where intended to give an introduction and survey

to novel developments in quantum integrable systems, quantum groups and con-

formal �eld theories|of course with emphasis on the work done by the group at

the Steklov Institute in St. Petersburg.

The notes follow closely the actual presentation of the material. So there is

no intention to present full arguments and complete references in order to make

the line of thought more transparent. The notes intend to give an idea of the

actual speech|we hope you enjoyed it|as we have done as participants of the

course.

We want to express our gratitude to L. D. Faddeev for his lecture and the

many discussions about the material therein. Furthermore we should like to

thank G. Haak, N. Kutz and M. Schmidt for their excellent and e�cient writing

and typing of the notes. This makes it possible to present them as the �rst

preprint of the newly founded Sonderforschungsbereich "Di�erential Geometry

and Quantum Physics".

Berlin, den 10. Dezember 1991, Ulrich Pinkall.
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2 First lecture

The mathematical theory of solitons is about 25 years old. It started with the in-

vention of the so-called inverse scattering method. The inverse scattering method

was based on the introduction of the so-called linear auxiliary space, and the Lax

equation, a very important additional idea was the Hamiltonian interpretation of

these concepts. The Hamiltonian interpretation of the Korteweg-de Vries equa-

tion was �rst given by Gardner, Zakharov and Faddeev in 1971. In our approach

we were mainly led by the idea of a future quantization of this subject, which was

completely classical at that time. To quantize something one has to know �rst of

all the Hamiltonian structure of the corresponding classical problem. Going step

by step deeper into quantum mechanics an algebraic structure evolved, which

was on one side very simple and on the other side quite universal. This algebraic

structure will be a main topic in the following lectures.

Here we will consider only models of 1 + 1 dimensional quantum �eld theory.

For simplicity we investigate only systems with discrete space variable and con-

tinuous time variable, as in the Hamiltonian approach it is more natural not to

discretize time.

Let x = n�4 be the space, t the time variable, with n = 1 : : : N and N+1 � 1,

(one dimensional chain with periodic boundary conditions). With each site n we

connect a Hilbert space h

n

. The total space of physical states is thereby given by

H =

N

O

n=1

h

n

: (2.1)

We are given some dynamical algebra, generated by

X

a

n

= 1 
 : : :
X

a


 : : :
 1 ; (2.2)

a some additional index, e.g. with respect to a Lie algebra basis, and all dynamical

variables are required to be functions of the X

a

n

.

Next impose the condition of ultralocality:

[X

n

;X

m

] = 0 for n 6= m: (2.3)

The dynamical equations are given as the usual Heisenberg equations:

_

X

a

n

= [H;X

a

n

] (2.4)

(a dot denoting derivation w.r.t. t). The idea of soliton theory is to associate to

the Hamiltonian H a large series of commuting integrals of motion. To achieve

this we introduce a new object, the so-called Lax operator

L

n

(�) = ((L

n;ij

(�)))

m�m

; (2.5)
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which is an m�m matrix in the auxiliary space V = C

m

and with matrix entries

which are operators on the Hilbert space h

n

. The introduction of the additional

parameter �, called spectral parameter will become more transparent later.

We look for a nice instrument to display the various commutation relations

between the matrix elements of the Lax operator in a compact way. By ultralocal-

ity these commutation relations do not depend on the index n. Skipping therefore

the n-dependence we may express everything by terms of the form

L

pq

(�)L

ij

(�) = (L(�)
 L(�))

pijqj

: (2.6)

and the products with reversed order of factors. Therefore it seems convenient

to de�ne the following operators on V 
 V constructed in terms of L:

L

1

= L
 1 and L

2

= 1 
 L (2.7)

The commutation relations among the matrix elements may now be written as

R(� � �)L

1

(�)L

2

(�) = L

2

(�)L

1

(�)R(� � �) (2.8)

with a matrix R(�) : V 
 V ! V 
V . We will call this relation the fundamental

commutation relations (FCR). Considering L

n

as a propagator we put now:

 

n+1

= L

n

 

n

; where  

n

2 V: (2.9)

This relation is called the auxiliary problem. It should be understood as a system

of matrix equations with operator coordinates, i.e. as a system of equations in a

noncommutative space.

If L

n

for small 4 is of the form:

L

n

= 1 +4 � L(x) +O(4

2

); (2.10)

with L(x) : V ! V , the auxiliary problem becomes in the continuous limit

d 

dx

= L(x) : (2.11)

Furthermore we have

 

k+1

= L

k

L

k�1

: : : L

1

 

1

: (2.12)

As monodromy it is natural to de�ne

M

def

= L

N

: : :L

1

(2.13)

The matrix entries of M are now global operators on H. The special feature of

the FCR is, that the pure local relation (2.8) gives a global relation (global on

H), for the monodromyM :
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Lemma 2.1 The FCR holds also for the monodromy M , i.e.:

R(� � �)M

1

(�)M

2

(�) =M

2

(�)M

1

(�)R(� � �): (2.14)

Proof: (In the following, we suppress the arguments � and �.)

By the FCR (2.8) and ultralocality we have for the products L

k

L

k�1

:

RL

1

k

L

1

k�1

L

2

k

L

2

k�1

= RL

1

k

L

2

k

L

1

k�1

L

2

k�1

= L

2

k

L

1

k

RL

1

k�1

L

2

k�1

= L

2

k

L

1

k

L

2

k�1

L

1

k�1

R

= L

2

k

L

2

k�1

L

1

k

L

1

k�1

R: (2.15)

The rest follows by induction.

The matrix entries of the monodromy are global operators. In order to get

scalar commuting operators on the full Hilbert space H we take the trace of the

monodromy.

F (�)

def

= trM(�): (2.16)

Assuming R(�) to be invertible and using (2.14) we get

F (�)F (�) = F (�)F (�): (2.17)

The F (�) are therefore generators of an in�nite dimensional algebra of commuting

operators. We will return later to the generalization of the notion of complete

integrability to in�nite dimensional dynamical systems.

The second part of this lecture will illustrate the above framework by exam-

ples.

2.1 Example 1

Let h

n

:= C

2

be the spin

1

2

quantum Hilbert space and

~

S =

1

2

~� the spin operator

where �

a

, a = 1; 2; 3; are the Pauli matrices. The S

a

n

satisfy the commutation

relations of sl(2;C): [S

a

n

; S

b

m

] = i�

abc

S

c

n

�

nm

. The Lax operator in our example is

now:

L

n

=

 

� + iS

3

n

iS

+

n

iS

�

n

� � iS

3

n

!

= �1 
 1 + i

~

S

n


 ~� = �1 
 1 + i

3

X

a=1

S

a

n


 �

a

:

So in this example V = h

n

, which is not true in general. With the R-matrix

given by:

R(�) =

1

� + i

(�1 + iP ) =

0

B

B

B

@

1 0 0 0

0 b(�) c(�) 0

0 c(�) b(�) 0

0 0 0 1

1

C

C

C

A
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where b =

�

�+i

and c =

i

�+i

the Lax operator L

n

satis�es the FCR as may

be veri�ed by direct computation. As a Hamiltonian we choose the following

element of the abelian algebra generated by the F (�):

H =

d

d�

j

�=

i

2

lnF (�) = const.(

X

n

S

a

n

S

a

n+1

+ const.); (2.18)

which turns out to be the Hamiltonian of the isotropic Heisenberg magnet. In this

particular case the FCR holds for any spin representation, so that the example

might be easily extended to higher spin j, with the corresponding Hilbert space

h

n

= C

2j+1

. In fact as was known for a long time the problem of complete

integrability depends crucially on the representation of sl(2;C). The Hamiltonian

const.(

P

n

S

a

n

S

a

n+1

+const.) turns out not to have enough commuting integrals of

motion for higher spin. But if we take the monodromy as given as in the case of

spin

1

2

we getH =

d

d�

j

�=

i

2

lnF (�) =

P

n

f

j

(S

a

n

S

a

n+1

), where the f 's are polynomials

of degree 2j. These Hamiltonians turn out to be the "correct" generalizations

of the spin

1

2

case in the sense, that they posses "enough" integrals of motion

to be completely integrable. Note, however, that the property of only pairwise

interactions is conserved.

2.2 Example 2

The previous example will now be used to �nd in an analogous way a Lax oper-

ator and Hamiltonian for the nonlinear Schr�odinger equation. For that purpose

we construct an "in�nite dimensional representation" for compact Lie groups

in terms of oscillator variables. Starting from the usual commutation relations

for annihilation and creation operators: [ 

n

;  

y

m

] = �

mn

we build up now spin

operators, which are satisfying the sl(2;C) commutation relations,

S

+

n

=  

y

n

(2S �  

y

n

 

n

)

1

2

;

S

�

n

= (2S �  

y

n

 

n

)

1

2

 

n

;

S

3

n

=  

y

n

 

n

� S: (2.19)

where S is any complex number. In the case where 2S is a positive integer one

gets subrepresentations (just the Verma modules of sl(2;C)), which are �nite

dimensional. If S tends to in�nity (\the quasiclassical limit"), we have the fol-

lowing behaviour of the spin operators in the vicinity of the lowest weight state

(playing here the role of the ground state).

S

+

n

behaves like

p

S 

y

,

S

�

n

behaves like

p

S ,

S

3

n

behaves like S.
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With this one obtains the asymptotic behavior of the Lax operator (2.1),

1

S

L

n

=

0

@

1 +

�

S

 

y

n

p

S

�

 

n

p

S

1 �

�

S

1

A

�

3

=

 

1 +4

 

�  

y

n

(x)

 

n

(x) ��

!!

�

3

+O(4

2

); (2.20)

if we put S =

1

4

and take into account, that

 

n

=4

1

2

 (x): (2.21)

The continuous quasiclassical limit of the Lax operator of the isotropic Heisen-

berg magnet is therefore nothing else than the well known Lax operator for the

nonlinear Schr�odinger equation.

2.3 Example 3

Another model might be obtained by substituting � by sinh�, so we obtain for

the Lax operator:

L

n

=

 

sinh� cot  + i cosh (�)S

3

n

iS

+

n

iS

�

n

sinh� cot  � i cosh (�)S

3

n

!

(2.22)

for the spin

1

2

operator S

a

n

. One realizes, that after the substitution

�



! � one

gets the same form of the Lax operator as in example (1) in the limit  = 0. The

R-matrix has the same form as in example (1) but the coe�cients b, c are now

substituted by:

b =

sinh�

sinh (�+ i)

and c =

i sin 

sinh (� + i)

: (2.23)

The Hamiltonian may now be calculated to be

H = const.(S

1

n

S

1

n+1

+ S

2

n

S

2

n+1

+ cos S

3

n

S

3

n+1

); (2.24)

which is the Hamiltonian of the anisotropic Heisenberg model (XXZ-model). The

Lax operator may alternatively be written as

L

n

(�) =

1

sin 

 

sinh (�+ iS

3

n

) i sin S

+

n

sin S

�

n

sinh(� � iS

3

n

)

!

(2.25)

Unfortunately the fundamental commutation relations do not hold in the case of

higher spin. But a slight modi�cation leads again to fundamental commutation

relations. Instead of the sl(2;C) commutation relations, we impose the following

deformed sl(2;C) relation:

[S

3

n

; S

�

n

] = �S

�

n

and [S

+

n

; S

�

n

] =

sin(2S

3

n

)

sin 

: (2.26)
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If these relations are satis�ed, then the L

n

(�) of the form (2.25) satisfy the

fundamental commutation relations but no longer form a Lie algebra. Instead

they \generate" a new algebraic structure which gives in the limit  ! 0 a Lie

algebra. A realizations of the relations (2.26) by usual spin operators:

[�; �] = i1

is given by:

S

�

=

1

2S sin 

e

�i

�

2

(1 + 2S

2

cos 2�)

1

2

e

�i

�

2

; S

3

=

�



:

Here now one obtains the quantum sine-gordon model as a special case of the

Heisenberg XXZ-chain, which is connected to a Lie algebra deformation, which

leads to the concept of a quantum group.

These examples cover the case of \rank 1", namely group sl(2). One can

use now groups of higher rank, there are generalizations of Lax operators for

them and corresponding integrable models, the parameters in this list are: group,

representation, anisotropy parameter (i.e. ). It will be interesting to see if that

is a classi�cation.
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3 Second lecture

In this lecture we want to look more carefully at the underlying algebraic structure

which showed up in the last lecture. For a more abstract consideration we will

suppress the dependence on the spectral parameter �. Furthermore we change

the notation for the generator matrices from L to T . So the general FCR reads

now

RT

1

T

2

= T

2

T

1

R; (3.1)

with R acting as matrix on V 
 V and T

1

= T 
 1 , T

2

= 1 
 T as previously

de�ned.

Let A be the algebra, which is generated by the matrix entries of T , so that

every element of Amay be written as f(T ), where f is a polynomial in the matrix

entries of T . De�ne a comultiplication on A:

4 : A ! A
A; (3.2)

on the generators of A by

4(T

ij

) =

X

k

T

ik


 T

kj

(3.3)

and extend it as an algebra homomorphism to the whole of A. If � � 4 = 4,

where � is the permutation x
 y! y 
 x on A
A, we call A cocommutative.

Example 3.1 Let A = C(G), G a group, and de�ne for all f 2 C(G)

4 : C(G)! C(G � G)

�

=

C(G)
 C(G)

as

(4f)(g

1

; g

2

) = f(g

1

g

2

):

This gives a comultiplication on the commutative algebra A = C(G).

In an abstraction of the above example to the case of a noncommutative,

noncocommutative algebra A, Drinfeld called the resulting algebraic structure a

quantum group.

Now the problem arises, if it is possible to �nd any nontrivial solutions to

the FCR for a given R-matrix. We will see in the following, that we have to

require certain conditions on R in order to get such solutions. Consider the

operator T

1

T

2

T

3

acting as a matrix on V 
 V 
 V , where T

i

acts as T on the

i-th component of V 
 V 
 V and as the identity on the others. There are two

possibilities to interchange these three operators according to the paths:

T

2

T

1

T

3

! T

2

T

3

T

1

% &

T

1

T

2

T

3

T

3

T

2

T

1

& %

T

1

T

3

T

2

! T

3

T

1

T

2

: (3.4)
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De�ne

R

12

R

13

R

23

� R

123

and

R

23

R

13

R

12

� R

321

:

The realizaton of (3.4) gives:

T

1

T

2

T

3

= (R

123

)

�1

T

3

T

2

T

1

R

123

(3.5)

= (R

321

)

�1

T

3

T

2

T

1

R

321

: (3.6)

In this way one obtains higher and higher relations on the matrix entries of T .

But it turns out, that it is enough to require R

123

= R

321

, to get rid of all higher

order relations simultaneously.

De�nition 3.2 The equation

R

12

(� � �)R

13

(�)R

23

(�) = R

23

(�)R

13

(�)R

12

(� � �) (3.7)

together with the FCR de�nes a quantized matrix algebra connected with the aux-

iliary space V. The equation (3.7) will be called Yang-Baxter equation.

One may look at the Yang-Baxter equation as a kind of Jacobi equation for the

\structure constants" of the quantized matrix algebra. It appeared previously in

statistical mechanics as well as in the theory of factorizable S-matrices.

In the previous lecture we de�ned the R-matrix:

R(�) =

0

B

B

B

@

sinh(�+ i) 0 0 0

0 sinh� i sin  0

0 i sin  sinh � 0

0 0 0 sinh(�+ i)

1

C

C

C

A

(3.8)

It is easy to check, that it satis�es the Yang-Baxter equation, which was to be

expected, as we have already found a nontrivial solution L

n

to the corresponding

FCR. The quantum group, which is connected with R(�) is a kind of quantum

loop group where � is the loop parameter. To begin with the most simple ex-

amples of quantum groups, we want to get rid of the spectral parameter. This

is possible, for example, by choosing the special point �. The case � = 0, which

gives R = R(0) = P , the permutation matrix, is not interesting. Another possi-

biltity is to let � tend to in�nity. To get a well de�ned limit, we take instead of

(3.8) the matrix

R(�) =

0

B

B

B

@

sinh(� + i) 0 0 0

0 sinh� i sin e

�

0

0 i sin e

��

sinh� 0

0 0 0 sinh(� + i);

1

C

C

C

A

; (3.9)
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which also satis�es the Yang-Baxter equation. Let �!1, then

R(�)

�!1

�

e

�

2

0

B

B

B

@

e

i

0 0 0

0 1 e

i

� e

�i

0

0 0 1 0

0 0 0 e

i

1

C

C

C

A

; (3.10)

so that one obtains

R =

0

B

B

B

@

q 0 0 0

0 1 q � q

�1

0

0 0 1 0

0 0 0 q

1

C

C

C

A

; (3.11)

with q := e

i

, the simplest example of an R-matrix which leads to a quantized

matrix algebra of 2� 2 matrices.

Let us now calculate the FCR for the 2 � 2 matrix:

T =

 

a b

c d

!

: (3.12)

The six nontrivial conditions resulting out of the FCR are:

ab = q

�1

ba;

dc = qcd;

ad� da = (q

�1

� q)bc;

ac = q

�1

ca;

db = qbd;

bc = cb: (3.13)

The matrix algebra generated by the a; b; c; d together with these relations will

be called Gl

q

(2;C). Here we think of the entries of a matrix as the generators

of the polynomial agebra over the matrices, i.e. we rather quantize the algebra

of functions over the Lie group in complete analogy with the �rst example. One

may look at q as a deformation parameter, as one gets for q = 1 a commutative

algebra, corresponding to usual matrices T .

Historically these relations were found by looking at the quantized Liouville

model on the lattice.

A natural algebraic question which arises, is whether there exist central ele-

ments of the algebra A. We �nd

det

q

T � ad� q

�1

bc (3.14)

which we may �x to be 1 to get a subalgebra, which we call Sl

q

(2;C). Another

formal central element is

b

c

, which may be singular as c is not required to be

invertible. T has an inverse with respect to matrix multiplication:

T

�1

=

 

d �q

�1

b

�qc a

!

= S: (3.15)
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T ! S = T

�1

is therefore an antiautomorphism from Sl

q

(2;C) to Sl
1

q

(2;C), i.e. S

satis�es the following fundamental commutation relations

RS

2

S

1

= S

1

S

2

R: (3.16)

We expect now, that there exist such quantum deformations for all classical

groups. Corresponding R-matrices were found by Jimbo and Bazhanov.

As another example of a Hopf algebra, we look now at the algebra of func-

tions on a Lie algebra g, i.e. the universal enveloping algebra U(g). De�ne a

cocommutator on the generators of the algebra by

4X = X 
 1 + 1 
X (3.17)

and extend it to the whole of U(g) as an algebra homomorphism. The resulting

Hopf algebra is therefore cocommutative but not commutative.

By the identi�cation with left-invariant vector�elds the elements X 2 U(g)

may be considered as di�erential operators h(X) on C(g). In such a way we get

a nondegenerate pairing between U(g) and C(G)

< X; f >= h(X)f(g)j

e

: (3.18)

So Lie algebra and Lie group are in a certain sense dual to each other.

In the following we will show, that the previously de�ned deformation of sl(2)

de�ned by the commutation relation

[S

+

; S

�

] =

sin(2S

3

)

sin 

(3.19)

is dual to Sl

q

(2;C).

As there are no further nontrivial examples of quantum groups of 2 � 2 ma-

trices with one generator matrix L satisfying the FCR, we consider now two

matrices L

�

as generator matrices. In order to get not too many generators we

restrict ourselves to triangular matrices, which corresponds to the choice of Borel

subalgebras in a matrix Lie algebra.

L

+

=

 

q

H

2

(q � q

�1

)X

+

0 q

�H

2

!

; L

�

=

 

q

�H

2

0

�(q � q

�1

)X

�

q

H

2

!

; (3.20)

containing three generators X

�

, H. The L

�

satisfy the following FCR's:

R

+

L

1

+

�

+

L

2

+

�

�

= L

2

+

�

�

L

1

+

�

+

R

+

(3.21)

with R

+

= PRP , where P is the usual permutation matrix, so one has R

+

12

= R

21

,

where R

21

=

P

i

R

i

2


 R

i

1

if R

12

=

P

i

R

i

1


 R

i

2

. If we de�ne R

�

def

= R

�1

we get

from (3.21) the remaining commutation relations,

R

�

L

1

�

L

2

+

= L

2

+

L

1

�

R

�

: (3.22)
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R

�

both satisfy the Yang-Baxter equations.

By direct computation of the FCR we get

q

H

2

X

+

= qX

+

q

H

2

; (3.23)

X

+

X

�

�X

�

X

+

=

q

H

� q

�H

q � q

�1

(3.24)

as de�ning relations on a new algebra B, which is generated by X

�

and H. If

one de�nes

< T

1

; L

2

�

>

def

= R

�

(3.25)

one obtains a pairing of the Hopf algebras A and B, which yields in the limit

 ! 0 (q ! 1) the above mentioned pairing between Lie group and universal

enveloping algebra of the Lie algebra.
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4 Third lecture

In the last lectures we saw that the concept of quadratic algebras de�ned by the

FCR

RT

1

T

2

= T

2

T

1

R: (4.1)

with generators T = ((T

ij

)), where T is a matrix on V 
 V , V some auxiliary

linear space, is relevant for de�ning quantum groups. We de�ned for example

Sl

q

(2;C) by the FCR with R-matrix

R

t

=

0

B

B

B

B

@

t

1

2

0 0 0

0 t

�

1

2

0 0

0 t

1

2

� t

�

3

2

t

�

1

2

0

0 0 0 t

1

2

1

C

C

C

C

A

; (4.2)

where we used the normalization R

t

= t

�

1

2

R

q

, q = t and took the freedom to

transpose the matrix (which changes nothing essential).

In this context t plays the role of a deformation parameter, so that for t = 1

one obtains the usual matrix algebra. This lecture will deal mainly with the

introduction of a di�erential geometric language in relation with quantum groups,

which will result in some basic notions of noncommutative di�erential geometry.

Here we look at the algebra generated by the T

ij

as coordinates of the quantum

group and try to enlarge the algebra by the introduction of a noncommutative

analogon of di�erentials on the quantum group. Then we will investigate the

additional commutation relations between them and the coordinates to get a

generalization (T

�

G)

t

of the cotangent bundle of a Lie group. We still deal with

�nite dimensional quantum groups and we will later associate this theory to

conformal �eld theory.

The following mechanical picture will help us to get an intuition of the new

concepts. Consider the isotropic spinning top with symmetry group G = SU(2).

We generalize this example to an arbitrary Lie group G. This generalized top

has as phase space T

�

G. We want to quantize this example, and simultaneously

produce a deformation of G in the sense of quantum groups.

Let ! 2 G and a 2 T

�

e

G be coordinates on the phase space T

�

G. The la-

grangian is given in analogy to the case G = SU(2) by

l = tr(d!!

�1

a)�

1

2

tr!

2

; (4.3)

the �rst term being the canonical 1-form

� = tr(d! !

�1

a): (4.4)

The Poisson brackets of the coordinates are

f!

1

; !

2

g = 0 (4.5)
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fa

1

; !

2

g = C!

2

(4.6)

fa

1

; a

2

g =

1

2

[C; a

1

� a

2

]; (4.7)

where C is the Casimir operator of G. For example for G = SU(2) we have

C =

X

a

�

a


 �

a

(4.8)

for the Casimir element, and it is easy to verify, that the usual Poisson structure

for the top

fa

�

; a

�

g = �

��

a



; (4.9)

may be given by the formula (4.7) if we set

a =

X

�

a

�

�

�

; (4.10)

and using

�

��

�

�


 �

�

= [C; 1 
 �



] (4.11)

But we concentrate not only on the generalized velocities a (as it is normally

done when studying the Poisson structure) but also on the coordinates.

This de�nes us a Poisson bracket, but says nothing about the direction in

which we should try to deform it until we are given quadratic relations. So we

would like to �nd a di�erent parametrization of the phase space, which yields

quadratic Poisson relations.

Restricting attention again to G = SU(2), in analogy with the chiral decom-

position, we write

a = u

0

 

p 0

0 �p

!

u

�1

0

(4.12)

with u

0

2 G=H, H is the Cartan subalgebra of diagonal matrices in G. We will

treat u

0

and p in the following as independent variables. Next we introduce in

addition to the left invariant di�erentials a their right invariant counterparts

a

L

def

= a; (4.13)

a

R

def

= !

�1

a

L

! (4.14)

= v

�1

0

 

p 0

0 �p

!

v

0

; (4.15)

with v

0

2 HnG. For getting a one-to-one parametrization, we require:

0 � p <1;

i.e. take into account the Weyl group. For the coordinates ! we set now

! = u

0

Qv

0

; (4.16)
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where

Q =

 

e

iq

0

0 e

�iq

!

: (4.17)

If we parametrize u

0

and v

0

by Euler angles �; �; ; �

u

0

= e

i��

3

e

i��

2

(4.18)

v

0

= e

i�

2

e

i��

3

(4.19)

We obtain a set of six variables (�; �; ; �; p; q). The canonical 1-form (4.4) in the

new coordinates reads now

� = pdq + p(cos 2�d� + cos 2d�): (4.20)

The variables p and p cos 2� (p cos 2) may now be interpreted as full spin and

third component of left (right) spin quantum numbers, as by de�nition p describes

the G-orbits.

The quantum Hilbert space is given by

H =

X

repr. of SU(2)

H

j


H

j

; (4.21)

where coordinates �, � are connected with the �rst and , � with the second

component.

De�ne now

u = u

0

Q; v = Qv

0

; (4.22)

i.e. add to u

0

and v

0

the missing Euler angles and set them equal to q. Then one

has for u and v the nontrivial relations

fu

1

; u

2

g = u

1

u

2

r(p); (4.23)

fv

1

; v

2

g = r(p)v

1

v

2

; (4.24)

with

r(p) =

i

p

0

B

B

B

@

0 0 0 0

0 0 1 0

0 �1 0 0

0 0 0 0

1

C

C

C

A

: (4.25)

Thus we obtained quadratic relations for the other new variables.

Therefore we are now in a position to deform and quantize this classical ex-

ample. But before we do this, let us review the main ideas of this procedure.

We had the FCR

RT

1

T

2

= T

2

T

1

R

16



with R-matrix (4.2). Expanding t = 1 + i�h + : : :, where  is the deformation

parameter and �h Planck's constant (the deformation parameter of quantization),

we get R = 1 + i�hr + : : :, with

r =

1

2

0

B

B

B

@

1 0 0 0

0 �1 0 0

0 2 �1 0

0 0 0 1

1

C

C

C

A

: (4.26)

and T

1

T

2

� T

2

T

1

+ i�h(rT

1

T

2

� T

2

T

1

r) + : : : = 0. With the usual Heisen-

berg quantization rule f; g =

i

�h

[; ] the last equation gives an additional Poisson

structure on the classical limit of the quantum group

fT

1

; T

2

g = [r; T

1

T

2

]: (4.27)

In the last equation T

1

and T

2

commute. This additional structure gives us now

the direction, in which we may deform the group.

Taking care of the di�erent form of our Poisson bracket relations (4.23) we

look now for a deformation described by a fundamental commutation relation in

the form

Ru

1

u

2

= u

2

u

1

R(p): (4.28)

Here now R(p) is no longer a usual matrix with commutative entries. In fact

the entries now depend on the variable p which is not central. Furthermore we

require it to have a limit for �h ! 0, which leads us to the Poisson structure

(4.23), i.e. R = 1 + i�hr + : : : ; R(p) = 1 + i�hr(p) + : : :.

Similar to the old FCR the selfconsistency of (4.28) imposes certain conditions

on R(p) which we therefore call the generalized Yang-Baxter equations (GYBE)

R

12

(p)(Q

2

)

�1

R

13

(p)Q

2

R

23

(p) = (Q

1

)

�1

R

23

(p)Q

1

R

13

(p)(Q

3

)

�1

R

12

(p)Q

3

: (4.29)

To check this relation, remember that p and Q = e

iq�

3

were introduced as conju-

gate variables. The commutation relations between p and q might be written as

e

iq

p = (p� i ln t)e

iq

.

From the history of integrable models we know already a natural candidate

for R(p), which was �rst given by Gervais and Neveu and deciphered by Bakelon

and Faddeev to be the so-called quantized 6j-symbol of the rotation group.

R

t

(p) =

0

B

B

B

B

B

B

@

t

1

2

0 0 0

0 t

1

2

q

1� (

t�t

�1

e

ip

�e

�ip

)

t

1

2

�t

�

3

2

1�e

2ip

0

0

t

1

2

�t

�

3

2

1�e

�2ip

t

1

2

q

1� (

t�t

�1

e

ip

�e

�ip

) 0

0 0 0 t

1

2

1

C

C

C

C

C

C

A

; with t = e

i�h

(4.30)

It depends only on e

ip

, not on p alone, which makes it necessary to restrict the

range of the coordinate p in the quantum case to the interval 0 � p < �. Also for
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p ! �i1 one has R

t

(p) ! R

t

, i.e. R

t

(p) contains R

t

in a particular limit and

satis�es the generalized YBE.

The classical limit is now achieved by the following choice

�h! 0;  ! 0 (4.31)

and the renormalization

p! p

cl

(4.32)

The last transformation, serves to restrict p to 0 � p

cl

<1. Now we have

t

1

2

� t

3

2

1� e

2ip

!

�h

p

cl

and R(p)! 1 + i�hr + : : :

The classical limit (4.31){(4.32) gives the undeformed top.

We summarize:

The deformed and quantized top is described by

Ru

1

u

2

= u

2

u

1

R(p);

R(p)v

1

v

2

= v

2

v

1

R;

and further commutation relations between u

0

, v

0

and p, q. The canonical coor-

dinates of the cotangent bundle are de�ned by u, v, p and q as

! = uQ

�1

v

and

A = u

 

e

ip

0

0 e

�ip

!

u

�1

;

where A is introduced as an element of the deformed Lie algebra which is rather

in the deformed group, i.e. we have in the limit

A = 1 + a+ : : :

The resulting commutation relations may be computed to be

R

+

!

1

!

2

= !

2

!

1

R

+

; (4.33)

R

�

!

1

A

2

= A

2

R

+

!

1

(4.34)

and

A

1

(R

�

)

�1

A

2

R

�

= (R

+

)

�1

A

2

R

+

A

1

; (4.35)

where we have de�ned R

+

= R and R

�

= PR

�1

P , P being the permutation

matrix on V 
 V .

Furthermore we have

R

�

= 1 + i�hr

�

+ : : : ;
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with

r

+

=

0

B

B

B

@

1

2

0 0 0

0 �

1

2

0 0

0 2 �

1

2

0

0 0 0

1

2

1

C

C

C

A

; r

�

=

0

B

B

B

@

�

1

2

0 0 0

0

1

2

�2 0

0 0

1

2

0

0 0 0 �

1

2

1

C

C

C

A

;

such that r

+

� r

�

= C. If we compute now the classical limit (4.31){(4.32), we

obtain from the relations (4.33){(4.35) the classical commutation relations, which

shows, how the classical theory is contained in our approach. In this sense one

may call ! the generators of a quantized Lie group and A the generators of a

quantized Lie algebra.
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5 Fourth lecture

In this lecture, we will take a closer look on the derivation of the relations de�ning

the quantum deformed top, which occurred at the end of the last lecture.

There we introduced the variables ! and A as an analogon of coordinates and

momentum of the classical top. We had by analogy with the classical undeformed

case ! = uQ

�1

v, with

Q =

 

e

iq

0

0 e

�iq

!

(5.1)

and A

L

= uDu

�1

, with

D =

 

e

ip

0

0 e

�ip

!

; (5.2)

with [p; q] = i�h1 and p = p

cl

. >From this we are now able to compute the

commutators of Q with D

Q

1

D

2

= D

2

Q

1

t

�

with � = diag(1;�1;�1; 1): (5.3)

The quadratic algebra is generated by u and v with relations

Ru

1

u

2

= u

2

u

1

R(p) (5.4)

and

R(p)v

1

v

2

= v

2

v

1

R; (5.5)

where R(p) was given in the last lecture and satis�es the generalized YBE.

Remember that u

0

= uQ

�1

and v

0

= Q

�1

v are commuting,

u

1

0

v

2

0

= v

2

0

u

1

0

: (5.6)

As p commutes with everything but q we see that

u

1

0

D

2

= D

2

u

1

0

(5.7)

and by (5.3)

u

1

D

2

= D

2

u

1

t

�

: (5.8)

Clearly A

L

doesn't depend on the diagonal matrix Q.

We want to write the commutation relations for ! and A:

!

1

!

2

= u

1

(Q

1

)

�1

v

1

u

2

(Q

2

)

�1

v

2

= u

1

u

2

0

v

1

0

v

2

= u

1

u

2

(Q

2

)

�1

(Q

1

)

�1

v

1

v

2

= R

�1

u

2

u

1

R(p)(Q

2

)

�1

(Q

1

)

�1

(R(p))

�1

v

2

v

1

R

= R

�1

u

2

u

1

(Q

1

)

�1

(Q

2

)

�1

v

2

v

1

R

= R

�1

u

2

u

1

0

v

2

0

v

1

R

= R

�1

u

2

v

2

0

u

1

0

v

1

R

= R

�1

!

2

!

1

R; (5.9)
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where we used the special form of Q

1

Q

2

:

Q

1

Q

2

=

0

B

B

B

@

e

2iq

0 0 0

0 1 0 0

0 0 1 0

0 0 0 e

�2iq

1

C

C

C

A

(5.10)

and the fact that R(p) has o�diagonal elements in the inner block only, so that

Q

1

Q

2

and R(p) commute. Thus we derived the relation

R!

1

!

2

= !

2

!

1

R: (5.11)

Next we investigate the relations between ! and A.

!

1

A

2

= u

1

v

1

0

u

2

D

2

(u

2

)

�1

= u

1

u

2

D

2

(u

2

)

�1

v

1

0

= R

�1

u

2

u

1

R(p)D

2

(u

2

)

�1

v

1

0

= R

�1

u

2

D

2

(D

2

)

�1

u

1

R(p)D

2

(u

2

)

�1

v

1

0

= R

�1

u

2

D

2

u

1

t

�

(D

2

)

�1

R(p)D

2

(u

2

)

�1

v

1

0

: (5.12)

Now we use a property of R(p) which will be taken here for granted and can

be veri�ed by direct computation (however, it's meaning will clarify in the last

lecture)

t

�

(D

2

)

�1

R(p)D

2

= P (R(p))

�1

P: (5.13)

Using this and the fact that we may substitute

e

R

def

= PR

�1

P and

e

R(p)

def

=

PR(p)

�1

P for R and R(p) in the FCR (5.5) we have at last

R!

1

A

2

= A

2

e

R!

1

: (5.14)

If we de�ne R

�

def

= R, R

+

def

=

e

R we obtain the relations of the previous lecture:

R

�

!

1

A

2

= A

2

R

+

!

1

: (5.15)

By the same way one may show

A

1

(R

�

)

�1

A

2

R

�

= (R

+

)

�1

A

2

R

+

A

1

: (5.16)

So we get an algebra (T

�

G)

t

, containing coordinates and di�erentials. This alge-

bra is not a Hopf algebra, but contains one, namely the quantum group G

t

. One

can use it for example to construct the exterior algebra f(!;A

1

; : : : ; A

n

). Re-

member, however, that the variables A are more grouplike than in the classical

case. This di�ers from the usual de�nition of cochains in algebraic topology.

In the classical limit

 ! 0; �h! 0; f; g =

i

�h

[; ]; (5.17)
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setting

A = 1 + a+ : : : ; R

�

= 1 + i�hr

�

+ : : : (5.18)

we get with the laplacian C = r

+

� r

�

and the classical top. With this we �nish

the discussion of the top and noncommutative geometry.

Now let us take a look at the theory of representation of quantum groups.

Usually in physics we speak about representations, if some generators are realized

as operators in a concrete space. This applies in our case to a Lie algebra. In

the case of a group we have a di�erent construction, which is to be called a

corepresentation.

Indeed, when we speak of the representation of the classical group we consider

a map

U : G ! Hom(V;K)

g 7! U(g) (5.19)

to be a representation, where V is some vectorspace over the �eld K, if U(g)

satis�es the additional relation

U(g

1

g

2

) = U(g

1

)U(g

2

): (5.20)

This is generalized to the case of quantum groups as follows. Let T be the

generator matrix of a quantum group and consider the functions U

��

(t) (�, � in

some index set), of its matrix elements t satisfying

U

��

(4t) = U

�

(t)
 U

�

(t): (5.21)

This de�nes us a corepresentation

� : t 7! kU

��

(t)k (5.22)

of A. The fundamental commutation relations now depend on the representation.

R

�

U

1

U

2

= U

2

U

1

R

�

(5.23)

So it is the auxiliary space which changes when we consider di�erent corepresen-

tations but the quantum space remains the same. To summarize this we may

write the following diagram:

changes doesn't change

corep. of coalgebra auxiliary space quantum space

rep. of algebra quantum space auxiliary space

After this classi�cation let us consider representations and thus take the genera-

tors of an algebra, i.e. the generators X

�

and q

H

on the quantum algebra su

q

(2).

We had the following commutation relations (compare second lecture)

q

H

2

X

+

= qX

+

q

H

2

; q

H

2

X

�

= q

�1

X

�

q

H

2

(5.24)
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and

X

+

X

�

�X

�

X

+

=

q

H

� q

�H

q � q

�1

; where q = e

i

;  real : (5.25)

The unitarity conditions

X

�

+

= X

�

; H

�

= H (5.26)

are consistent with the above relations for all q 2 S

1

2 C. We choose an or-

thonormal basis fe

n

g of the representation space and inspired by the classical

case we make the ansatz

X

+

e

n

= f(n)e

n+1

; X

�

e

n

= g(n)e

n�1

; q

H

2

e

n

= h(n)e

n

: (5.27)

where f(n), g(n), h(n) are complex numbers. By (5.26) one has the relations

f(n) = g(n+ 1); h(n) =

1

h(n)

: (5.28)

The commutation relations give us

h(n + 1) = qh(n); (5.29)

f(n� 1)g(n) � g(n+ 1)f(n) =

1

q � q

�1

(h

2

�

1

h

2

); (5.30)

or

jg(n)j

2

� jg(n+ 1)j

2

=

1

q �

1

q

(h

2

�

1

h

2

): (5.31)

Now the expression

A = (q + q

�1

)(q

H

+ q

�H

) + (q � q

�1

)

2

(X

+

X

�

+X

�

X

+

) (5.32)

de�nes a central element|the deformation of the usual Casimir. We can write

Ae

n

= (q � q

�1

)

2

(jg(n)j

2

) + jg(n+ 1)j

2

) + (q + q

�1

)(h

2

+

1

h

2

)e

n

: (5.33)

A solution to the above equations for g(n) and h(n) is

jg

2

(n)j =

1

sin

2



(

1

2

cos(2n � 1) +B) (5.34)

and

h(n) = q

n

: (5.35)

where B is some constant. In order to obtain tracelessness of the �nite dimen-

sional representation matrices, n must be integer or semi-integer, consequently

the spectrum of H is integer spaced and symmetric with respect to 0. The largest
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negative constant B, such that jg

2

j is still positive is �

1

2

. To obtain a �nite

dimensional representation one may therefore write

jg

2

(n)j =

1

sin

2



�

1

2

cos((2n� 1))�

1

2

cos((2j + 1)

| {z }

p

)

�

=

1

sin

2



�

sin((n+ j)) sin((j � n+ 1))

�

; (5.36)

with 0 � p < �. Here g(n) = 0 for n = �j and g(n+1) = f(n) = 0 for n = j+1,

i.e. the highest and lowest weight vectors are e

j

and e

�j

, respectively.

Another possibility is to choose a positive B �

1

2

, then

g

2

(n) =

1

sin

2



�

1

2

cos(2n � 1) +

1

2

cosh ~p

�

; with 0 � ~p <1: (5.37)

We refer to this as the hyperbolic case. In this case one gets a �nite dimensional

representation only if  =

�

n

, n 2 N. Then one has g(n+N) = g(n) and imposing

e

n+N

= e

n

, we get the so-called cyclic representation of dimension N .
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6 Fifth lecture

In this and the next lecture we will investigate a new kind of symmetry, showing

up in quantum mechanics which is described by quantum groups (confer the

article of Mack and Schomerus or even more axiomatic Fredenhagen). Instead

of our �rst toy model, the quantized top, we will now look at model, which is

well known in quantum �eld theory, the Wess-Zumino-Novikov-Witten model

(WZNW model).

Let x

0

= x 2 [0; 2�] and x

1

= t 2 R be the space and time coordinates,

respectively. The phase space is therefore a cylinder M = S

1

� R . We study

�elds g(x; t) taking values in the Lie group G = SU(2). We introduce the left

currents by pulling back the right invariant Maurer-Cartan form to M ,

J

�

= @

�

gg

�1

; (6.1)

which takes values in the corresponding Lie algebra, so one might use the Killing

form to write as action

A = �

1

8

Z

trJ

2

�

dxdt+

1

12

Z

�

d

�1

tr((dgg

�1

)

3

)

�

�

: (6.2)

The second term is called by the name of its inventors the Wess-Zumino (WZ)

term. The � here denotes pullback w.r.t. g, integration is over the whole space-

time. The form tr((dgg

�1

)

3

) is not exact, the operation of taking the inverse of

the derivation produces therefore singularities. The WZ term is therefore only

de�ned up to an ambiguity. But this ambiguity plays no role in the functional

integral, which contains only e

iA

, if and only if it is integer valued. This forces

 =

�

l

; l an integer: (6.3)

The role of such multivalued actions in quantum �eld theory was investigated by

Novikov.

We have therefore in the general WZNW model two parameters, a group G

and an integer l, i.e. the same situation as for Kac-Moody algebras. We will see

later that these two things are actually more intimately connected.

Let us investigate this model �rst classically and then quantize it. Consider

g and J

0

as independent variables and change the above lagrangian to

A =

1

4

Z

(J

0

@

0

gg

�1

�

1

2

J

2

0

�

1

2

J

2

1

)dxdt+WZ term; (6.4)

from which we read o� the canonical 1-form

! =

1

4

Z

(J

0

�gg

�1

)dxdt+WZ term: (6.5)
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� denotes the di�erential in the phase space. Variation in the phase space gives

the following symplectic form


 = �! =

1

4

Z

tr

�

�J

0

^ �gg

�1

+ (J

0

� J

1

)(�gg

�1

)

2

�

dxdt; (6.6)

because

�tr((dgg

�1

)

3

) = 3dtr(�gg

�1

(dgg

�1

)

2

): (6.7)

The J

1

term occurred because of the WZ term. In order to obtain the corre-

sponding Poisson structure we invert the matrix (where �g is associated with the

�rst row and column and �J

0

with the second):

 

F 1

�1 0

!

�1

=

 

0 �1

1 F

!

; (6.8)

therefore the variables g commute,

fg

1

(x); g

2

(y)g = 0; (6.9)

but

fJ

1

0

(x); g

2

(y)g = �2Cg

2

(y)�(x� y) (6.10)

and

fJ

1

0

(x);J

2

0

(y)g = [J

1

0

(x)� J

2

0

(y)� J

1

1

(y) + J

2

1

(y); C]�(x� y): (6.11)

Furthermore we have

fJ

1

0

(x); @g

2

(y)(g

2

(y))

�1

g =

= �2C(@g

2

(y)�(x� y)(g

2

(y))

�1

+ 2Cg

2

(y)�

0

(x� y)(g

2

(y))

�1

+ 2@g

2

(y)(g

2

(y))

�1

C�(x� y); (6.12)

fJ

1

0

(x);J

2

1

(y)g = 2[C;J

2

1

(y)]�(x� y) + 2C�

0

(x� y): (6.13)

If we de�ne L =

1

2

(J

0

+ J

1

) to be the left current w.r.t. light cone variables it

follows

fL

1

(x); L

2

(y)g =

1

2

[C;L

1

(x)� L

2

(y)]�(x� y) + C�

0

(x� y) (6.14)

and in coordinates w.r.t. the Pauli matrices, L = L

a

�

a

,

fL

a

(x); L

b

(y)g = �

abc

L

c

�(x� y) + �

ab

�

0

(x� y): (6.15)

These are the commutation relations for a Kac-Moody algebra with central ex-

tension. A part of the phase space constitutes therefore a Kac-Moody algebra.

Let us de�ne a right current (which is left invariant) by

R =

1

2

g

�1

(J

0

� J

1

)g; (6.16)
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for which we have

fR

1

(x); R

2

(y)g = �

1

2

[C;L

1

(x)� L

2

(y)]�(x� y)� C�

0

(x� y) (6.17)

and

fL

1

(x); R

2

(y)g = 0: (6.18)

At last we have a chiral decomposition of the phase space in left and right movers,

L and R respectively. However, it will be shown later on, that these variables

are not enough to characterize the phase space completely. We are to introduce

another scalar cyclic coordinate, which Poisson commutes with L and R. With

this we have the coordinate transformation

(g;J

0

)! (L(x); R(x); q) (6.19)

and the hamiltonian H decouples into two currents:

H = J

2

0

+ J

2

1

= L

2

+R

2

: (6.20)

The equations of motion are:

@

0

L + @

1

L = 0 and (6.21)

@

0

R� @

1

R = 0: (6.22)

Substituting the expressions for J

0

and J

1

, (6.1), into L and R,

L =

1

2

(@

0

gg

�1

+ @

x

gg

�1

) (6.23)

R =

1

2

(g

�1

@

0

g � g

�1

@

x

g) (6.24)

and subtracting after multiplication by g from the right and left, respectively, we

get for the old �eld g(x; t)

@

x

g = Lg � gR: (6.25)

As in the case of the top we make the ansatz

g = u(x)Kv(x); (6.26)

where u and v satisfy @

x

u = Lu and @

x

v = �vR with initial conditions u(0) = 1 ,

v(0) = 1 , where we have chosen a �xed point 0 2 S

1

. We de�ne the monodromy

for u and v by

u(x+ 2�) = u(x)M

L

; and v(x+ 2�) =M

R

v(x): (6.27)

From the periodicity of g(x) it follows that K = M

L

KM

R

. Therefore M

L

and

M

�1

R

are conjugated by K and have the same spectrum. We set

M

L

= Z

L

DZ

�1

L

; M

R

= Z

�1

R

D

�1

Z

R

; (6.28)
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where D is a diagonal matrix:

D =

 

e

ip

0

0 e

�ip

!

with 0 � p � �: (6.29)

This implies that D and Z

�1

L

KZ

�1

R

commute and the only freedom we have for

K is

K = Z

L

QZ

R

where Q =

 

e

iq

0

0 e

�iq

!

: (6.30)

q is the looked for cyclic variable.

The above equations bear a strong resemblance to the equations for the quan-

tized top, so that we may say, that the quantum top is hidden inside this model

of conformal �eld theory.

L and R are chiral �elds, so we obtain for the space and time dependence of

u and v:

u(x; t) = u(x� t);

v(x; t) = v(x+ t): (6.31)

Now introduce instead of u and v the Bloch-Floquet solutions

u

F

(x) = u(x)Z

L

Q; v

F

(x) = QZ

R

v(x): (6.32)

These are quasiperiodic as

u

F

(x+ 2�) = u(x)M

L

Z

L

Q = u(x)Z

L

DQ = u

F

(x)D; (6.33)

v

F

(x+ 2�) = QZ

R

M

R

v(x) = QD

�1

Z

R

v(x) = D

�1

v

F

(x) (6.34)

(Q and D commute). g is now given by

g = u

F

Q

�1

v

F

: (6.35)

In the next lecture we will quantize this example quite similar to the example of

the top. It will be shown that we obtain a nice quadratic algebra in the variables

u

F

, v

F

, p and q which may be quantized. The problem, which arises now, is that

we have no longer ultralocality. Therefore we will �rst discretize the model in the

x variable thereby returning to the methods of the �rst lecture, quantize on the

lattice, and then study the continuous limit.
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7 Sixth lecture

In this lecture we want to investigate further the connection between quantum

groups and conformal �eld theory. The characteristic features, which identi�ed

the WZNWmodel of the last lecture as a conformal �eld theory, were the splitting

of the algebra of observables in chiral components A = A

L


A

R

described by left

and right movers L and R, respectively, and the action of the Virasoro algebra.

The left mover L satis�ed Kac-Moody algebra commutation relations, and the

energy-momentum tensor, the generator of the Virasoro algebra is given by

T

L

= tr(L

2

(x) + @

x

L�

3

): (7.1)

To circumvent the di�culties arising of the missing ultralocality of our Poisson

bracket relations for the classical WZNW model we go to the lattice in order to

�nd an appropriate quantization of the above model. Our main tool is again the

construction of quadratic algebras as for the quantized top. We'll skip some of

the standard calculations.

Let x = n4 ! n, 1 � n � N be the discrete space variable and L

n

the discrete

analogon of the left mover at site n.

Consider the commutation relations

R

+

L

1

n

L

2

n

= L

2

n

L

1

n

(R

�

)

�1

;

L

1

n

L

2

n+1

= L

2

n+1

R

+

L

1

n

; (7.2)

and suppose, that L

n

and L

m

commute for jn � mj � 2. We can write these

relations in a more short form

L

1

m

(R

�

m�n�1

)

�1

L

2

n

R

�

m�n

= (R

+

m�n

)

�1

L

2

n

R

+

m�n+1

L

1

m

; (7.3)

where

R

n

=

(

R for n = 0

1 for n 6= 0

(7.4)

In the continuous limit

R

�

= 1 + i�hr

�

+ : : : ; (7.5)

L = 1 +4L(x) + : : : ; (7.6)

�

n;m

4

�! �(x� y); y = m4 (7.7)

and

�

n+1;m

� �

n;m

4

2

�! �

0

(x� y): (7.8)

and so get Poisson relations between L(x) and L(y) from the previous lecture

taking into account, that C = r

+

� r

�

.
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We know already that the local �eld g(x) is given by

g(x) = uKv; (7.9)

Where u and v satisfy the auxiliary problems

u

0

= Lu; v

0

= �vR; (7.10)

with u(0) = v(0) = 1 . Now the discrete version reads

u

n

= L

n

u

n�1

; u

0

= 1 (7.11)

or

u

n

= L

n

: : :L

1

: (7.12)

and analogously for v; one has to substitute L with R and read the formulas from

right to left. To get the commutation relations for the u

n

's we therefore have

to calculate the commutation relations of chains of L

i

's. We �rst show, that L

n

commutes with the triple L

n+1

L

n

L

n�1

:

L

1

n

L

2

n+1

L

2

n

L

2

n�1

= L

2

n+1

R

+

L

1

n

L

2

n

L

2

n�1

= L

2

n+1

L

2

n

L

1

n

(R

�

)

�1

L

2

n�1

= L

2

n+1

L

2

n

L

2

n�1

L

1

n

: (7.13)

The commutation relations of u

n

and u

m

are therefore nearly independent of m

and n. The situation becomes more complicated only if n = m or n = N , the

total number of sites in the lattice. We get

u

1

n

u

2

m

R

�

= u

2

m

u

1

n

(

+ for n > m

� for n < m

(7.14)

and

R

+

u

1

n

u

2

n

= u

2

n

u

1

n

(R

�

)

�1

: (7.15)

Similarly we obtain for v:

v

1

n

v

2

m

= R

�

v

2

m

v

1

n

(

+ for n > m

� for n < m

(7.16)

and

(R

�

)

�1

v

1

n

v

2

n

= v

2

n

v

1

n

R

�

; (7.17)

while u

n

and v

m

commute for all m, n.

The element g has nontrivial commutation relations with L and R (as they

all contain the left current J

0

, see the previous lecture), so that in the discrete
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version, setting g

n

= u

n

Kv

n

, we should require nontrivial commutation relations

between K and L

1

and L

N

,

K

1

L

2

1

= L

2

1

R

+

K

1

R

�

K

1

L

2

N

= L

2

N

K

1

; (7.18)

besides of the FCR

RK

1

K

2

= K

2

K

1

R: (7.19)

We shall see soon, that these relations lead to the veri�cation of periodic boundary

conditions.

In the continuous limit the local �eld g(x) is commutative:

fg(x); g(y)g = 0; (7.20)

whereas we get from (7.16) and (7.19), that

g

1

n

g

2

m

= g

2

m

g

1

n

(7.21)

Rg

1

n

g

2

n

= g

2

n

g

1

n

R: (7.22)

Let us de�ne the left and right monodromy

u

N

def

= M

L

and v

N

def

= M

R

(7.23)

Periodic boundary conditions on the local �eld g should read

g

N

=M

L

KM

R

| {z }

def

=

e

K

= g

0

= K: (7.24)

One may show that K(

f

K)

�1

commutes with every element of the algebra gener-

ated by the introduced coordinates and relations, which we always assume to be

irreducible. This implies that

f

K is K multiplied by a number which we believe to

be 1.One of the reasons is the classical limit. At last we have for the monodromies

M

1

L

(R

�

)

�1

M

2

L

R

�

= (R

+

)

�1

M

2

L

RM

1

L

;

R

�

K

1

M

2

L

= M

2

L

R

+

K

1

: (7.25)

The comparision of equations (7.19) and (7.25) with the fourth lecture show us

that there is a quantum top embedded in a highly nontrivial way inside our

observable algebra.

So it turns out, that in each chiral component of a conformal invariant quan-

tum �eld theory (as the WZNW model is in some sense universal) one has a

hidden action of a (�nite dimensional) quantum group, which is independent of

the chosen regularization in the discretization procedure.
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In the language of algebraic �eld theory, the monodromies M

L

and M

R

label

the representations of the observable algebra and the K plays a role similar to

that of a localized endomorphism between the superselection sectors.

Let us now look at the quasiperiodic Floquet solutions u

F

def

= uN

L

and v

F

def

=

N

R

v, which were already de�ned in the �fth lecture

K = Z

L

QZ

R

def

= N

L

Z

R

def

= Z

L

N

R

: (7.26)

N

L

has the same commutation relations with left current L as K, as Z

R

contains

only the right current R. From the analogy with the top it follows, that N satisfy

the relations

RN

1

N

2

= N

2

N

1

R(p) (7.27)

and comparising (7.17) and (7.27) we get

u

1

F

(n)u

2

F

(m) = u

2

F

(m)u

1

F

(n)R

�

(p) (7.28)

where + stands for n > m and � for n < m. The mystical relation (5.13) which

occurred in the fourth lecture is now nothing else than the consistency relation

of the order on the lattice introduced by the relations (7.28) with periodicity of

the x-space.

Let us write the total quantum Hilbert space H as sum of tensor products of

representation spaces H

L

j

of the Kac-Moody algebra generated by the left movers

with some multiplicities B

j

,

H =

X

j

H

L

j


B

j

; (7.29)

where

M

L

: H

L

j

! H

L

j

: (7.30)

One may show that the center of the quantum Lie algebra and the center of the

Kac-Moody algebra are equal, both are generated by the trace of the monodromy.

Furthermore the representations of the quantum group and the Kac-Moody al-

gebra are in one-to-one correspondence, we may therefore decompose the repre-

sentation space H

L

j

in a part V

j

carrying a representation of the quantum group

(zero modes) and an oscillator part H

0

independent of the spin label,

H

L

j

= V

j


H

0

: (7.31)

All this shows, that there are strong relations between Kac-Moody algebras and

quantum groups. The level � of the representation of a Kac-Moody algebra is

explicitly given by � = l�2, where l is connected with the deformation parameter

 of the quantum group via  =

�

l

, q = e

i

.
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Taking now in account the second chiral component and the fact that the

quantum top is embedded symmetrically in the chiral algebras we obtain

H =

X

j

H

L

j


H

R

j

: (7.32)

As was mentioned before the monodromies are operators on the representation

spaces and K mediate between the di�erent representations, in addition to (7.30)

we get

K : H

j

! H

j+

1

2


H

j�

1

2

(7.33)

and

M

R

: H

R

j

! H

R

j

: (7.34)

In addition there is a gauge action of the quantum group on the observable

algebra, i.e. for example

L

n

! h

n+1

L

n

h

�1

n

(7.35)

where the h

n

are elements of a quantum group

Rh

1

n

h

2

n

= h

2

n

h

1

n

R (7.36)

commuting with L

n

h

1

n

L

2

m

= L

2

m

h

1

n

: (7.37)

We found a strong relationship between a �nite dimensional quantum group

G

q

and an in�nite dimensional Kac-Moody algebra KM

�

, both of which are

parametrized by a compact group G and one additional parameter. KM

�

is

the characteristic object in the description of 1 + 1-dimensional conformal �eld

theory. Recently N. Reshetikhin and I. Frenkel found a quantization KM

�;q

of

Kac-Moody algebra KM

�

, which seems to be associated via a similar construc-

tion to the so-called Sklyanin algebra G

q;u

, which is a generalization of a quantum

group and contains also two additional parameters. In short this may be sum-

marized by the following diagram.

G

KM

�

G

q

G

q;u

KM

�;q
(?)

�

�

�

��

Q

Q

Q

Qs

?

?

�

�

�

�

��

-�

-�

-

The (?) may some day be �lled with a Lie algebra connected with 2 + 1-

dimensional �eld theory, continuing the ladder to higher dimensions. One goes
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one step further in the dimension in the �rst line, because the WZNW model is

a transgression of the topological �eld theory with the Chern-Simons lagrangian.

If it is true also for the second line, than it follows, that there exists a four di-

mensional �eld theory which can be reduced to quantum mechanics. The search

for such a model is an interesting and intriguing problem
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