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1. Introduction

Experiments with the LHC accelerator at CERN may soon reveal the mechanism of the

electroweak symmetry breaking, pivotal to our understanding of fundamental interactions.

The symmetry breaking is supposed to proceed in a textbook manner: The Higgs field

develops a constant ground state expectation value which gives a mass for the charged W±

and the neutral Z bosons but leaves the photon massless.

However, there remains theoretical issues to be addressed. Among them, a theorem

by Elitzur [1] states that it should be impossible to spontaneously break a local symmetry

such as the electroweak gauge group GWS = SUL(2) × UY (1). According to this theorem

only global symmetries can be spontaneously broken. A gauge fixed theory avoids this

conundrum since the local gauge symmetry becomes explicitly broken by the gauge fixing

condition. Furthermore, both numerical lattice simulations [2] and formal arguments [3]

show that the transition between the symmetric and the Higgs phase can proceed in an

analytic manner along a continuous path in the phase diagram. In particular, since the

gauge symmetry is unbroken in the symmetric phase it must remain unbroken also in the

Higgs phase, and this appears to bring the Higgs mechanism of the Weinberg-Salam model

in line with Elitzur’s theorem.

Here we address these issues from a new perspective by showing how the entire elec-

troweak Lagrangian can be written in terms of manifestly SUL(2) × UY (1) invariant vari-

ables that are the analogs of the Meißner supercurrent in the Ginzburg-Landau approach

to BCS superconductor. These variables can be interpreted in terms of spin-charge sepa-

ration, in line with the spin-charge separation that has been previously employed in the

context of strongly correlated electron systems in condensed matter physics [4], [5], [6].

Thus the proper interpretation of our variables appears to be in terms of the strongly
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coupled (strongly correlated) dynamics of electroweak theory. Furthermore, since the non-

Abelian supercurrents implement the effects of gauge symmetry breaking by a mere change

of variables and without any gauge fixing, any issues with Elitzur’s theorem become obso-

lete.

We also show that the isospin-hypercharge separated electroweak Lagrangian can be

given a gravitational interpretation in terms of conformal geometry. This suggests a dual

relation between the strongly coupled electroweak theory and a theory of gravitation [7].

In particular, we propose that the ground state of the electroweak theory is the four di-

mensional de Sitter space, with the modulus of the Higgs field as the dilaton.

2. Abelian Higgs Model

We start by illustrating our proposal by considering a complex scalar field φ and a vector

field Ai in three space dimensions, in the context of the conventional Landau-Ginzburg

approach to BCS superconductivity. There are a total of five independent fields. We

introduce an invertible change of variables to a set of five independent fields (Ji, ρ, θ),

φ → ρ · eiθ

Ai → Ji = i
4e|φ|2 [φ∗(∂i − 2ieAi)φ − c.c.]

(2.1)

Note that we have not yet detailed any physical model where these variables appear as

field degrees of freedom. We now proceed to the Landau-Ginzburg Hamiltonian which is

relevant to BCS superconductivity, with φ the scalar field that describes Cooper pairing of

electrons and Ai the (Maxwellian) U(1) magnetic vector potential,

H =
1

2
B2

i + |(∂i − 2ieAi)φ|2 + λ
(
|φ|2 − v2

)2
. (2.2)

Here Bi denotes the magnetic field. This Hamiltonian displays the familiar Maxwellian

U(1) gauge invariance

φ → e2ieηφ

Ai → Ai + ∂iη

In terms of the new fields (2.1) the Hamiltonian (2.2) is

H =
1

4

(
Jij +

π

e
σ̃ij

)2
+ (∂iρ)2 + ρ2J2

i + λ
(
ρ2 − η2

)2
, (2.3)

with

Jij = ∂iJj − ∂jJi

and

σ̃ij = ǫijkσk =
1

2π
[∂i, ∂j ]θ (2.4)

Here σi is the string current, its support in R
3 coincides with the worldsheet of the core

of a nonrelativistic Abrikosov vortex. When (2.3) describes such a vortex, (2.4) subtracts

a singular contribution that emerges from Jij . This singularity also emanates in the third
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term in the r.h.s. of (2.3). There it becomes removed by the density ρ which vanishes on

the worldsheet of the vortex core.

The Hamiltonian (2.3) involves only variables that are manifestly U(1) gauge invariant,

there is no local gauge invariance present in (2.3). But no gauge has been fixed in deriving

(2.3) from (2.2). Instead, all gauge dependent quantities have been explicitly eliminated

by the change of variables. Notice that Eq. (2.4) is invariant under a U(1) gauge trans-

formation that entails a shift in θ by a twice differentiable scalar function. Since (2.4)

displays no gauge invariances, there are no issues with Elitzur’s theorem. Moreover, since

ρ ≥ 0 there are no gauge invariant global symmetries to be spontaneously broken by the

potential term even though the Meißner effect does reflect the properties of the potential

term.

3. Non-Abelian Supercurrents

We wish to generalize the previous approach to the (bosonic sector of the) standard elec-

troweak theory, defined by the classical Lagrangian

LWS =
1

4
~G2

µν(W ) +
1

4
F 2

µν(Y ) + |DµΦ|2 + λ|Φ|4 + µ2|Φ|2 (3.1)

We use the notation of [8]. For the moment we work in a spacetime with Euclidean

signature. The matrix-valued SUL(2) isospin gauge field is

Ŵµ ≡ W a
µτa = ~Wµ · ~τ

with τa the isospin Pauli matrices, Yµ is the (Abelian) UY (1) hypergauge field, and

~Gµν(W ) = ∂µ
~Wν − ∂ν

~Wµ − g ~Wµ × ~Wν , (3.2)

Fµν(Y ) = ∂µYν − ∂νYµ . (3.3)

The SUL(2) × UY (1) covariant derivative is

Dµ = 1l ∂µ − i
g

2
Ŵµ − i

g′

2
Yµ 1l , (3.4)

where 1l is the 2× 2 unit matrix in the isospin space. The complex isospinor Higgs field Φ

is decomposed as follows,

Φ = φX with φ = ρ eiθ & X = U
(

0

1

)
. (3.5)

Here φ is a complex field, X a two-component complex isospinor, and U a SUL(2) matrix.

The

GWS = SUL(2) × UY (1)

gauge transformation acts on Φ as follows,

Φ
GWS−−→ eiωY Ω Φ ⇒

{
φ −→ eiωY φ

X −→ ΩX (3.6)
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where Ω ∈ SUL(2) and eiωY ∈ UY (1). As a consequence the decomposition separates

isospin from hypercharge [9]. It also introduces a new (internal) compact gauge group

Uint(1) :
φ → e−iωcφ

X → eiωcX (3.7)

which leaves the field Φ intact. The spinor X ≡ X1 and its isospin conjugate

X2 = eiβiτ2X ∗

form an orthonormal basis (i, j = 1, 2 and a, b =↑, ↓),

X †
i · Xj ≡

∑

a=↑,↓

X ∗
iaXaj = δij

∑

i=1,2

XiaX †
ib = δab

Hereafter we set β = 0 as it parameterizes an internal degree of freedom that was already

accounted for by (3.7).

We introduce the non-Abelian supercurrents in parallel with Eq. (2.1). For this we

expand the covariant derivative of the Higgs field in the spinor basis (X1,X2),

DµΦ =
[1
ρ
∂µρ +

i

2

(
gJ3

µ − g′Yµ

)]
Φ − i

g

2
J+

µ · Φc (3.8)

Here

Φc = φX2

is the isocharge conjugated Higgs field. The supercurrents J+
µ , J3

µ and Yµ emerge when we

project out the spinor components

J+
µ =

2i

g
X †

2

(
∂µ − ig

2
Ŵµ

)
X1 ≡ ~Wµ · ~e+ +

i

g
~e3 · ∂µ~e+ , (3.9)

J3
µ =

2

ig
X †

1

(
∂µ − ig

2
Ŵµ

)
X1 ≡ ~Wµ · ~e3 −

i

2g
~e− · ∂µ~e+ , (3.10)

Yµ=
i

g′|φ|2
[
φ⋆
(
∂µ − i

g′

2
Yµ

)
φ − c.c.

]
. (3.11)

Here

J+
µ = J1

µ + iJ2
µ

and

~e+ ≡ ~e1 + i~e2

with ~ei (i = 1, 2, 3) three mutually orthogonal unit vectors,

~e3 = −Φ†~̂τΦ

Φ†Φ
≡ −X †

1 ~̂τX1 (3.12)

~e+ = X †
2 ~̂τX1 (3.13)
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and the internal gauge group (3.7) acts as follows,

Uint(1) :
~e3 → ~e3

~e+ → e2iωc~e+
(3.14)

In parallel with the Abelian Higgs model we interpret (3.9)-(3.11) as a change of

variables from the original twenty (real) fields (W a
µ , Yµ,Φ) to a new set of twenty fields. In

addition of the sixteen (Ja
µ ,Yµ) these include the modulus ρ and the orthogonal triplet ~ei.

The supercurrents (J3
µ, J+

µ ,Yµ) are the manifestly GWS = SUL(2) × UY (1) gauge in-

variant electroweak supercurrents. They are the non-Abelian generalizations of (2.1). But

under the internal gauge symmetry (3.7) supercurrents (J3
µ, J+

µ ,Yµ) transform nontrivially,

in the following manner:

Uint(1) :

J+
µ → e2iωcJ+

µ ,

J3
µ → J3

µ + 2
g
∂µωc ,

Yµ → Yµ + 2
g′

∂µωc .

(3.15)

Finally, we note that quite similar electroweak supercurrents have been previously

presented in [10]. See also [11] for a related construction.

4. Electroweak Lagrangian in Supercurrent Variables

In terms of the GWS = SUL(2) × UY (1) invariant variables the classical electroweak La-

grangian (3.1) acquires a form similar to (2.3),

LWS =
1

4

(
~Gµν( ~J) +

4π

g
~̃
Σµν

)2

+
1

4

(
Fµν(Y) +

4π

g′
σ̃φ

µν

)2

+(∂µρ)2+
ρ2

4

(
gJ3

µ − g′Yµ

)2
+

ρ2g2

4
J+

µ J−
µ + λρ4 + µ2ρ2 (4.1)

Here ~Gµν and Fµν are now the curvatures of ~Jµ resp. Yµ,

~Gµν( ~J) = ∂µ
~Jν − ∂ν

~Jµ − g ~Jµ × ~Jν , (4.2)

Fµν(Y) = ∂µYν − ∂νYµ . (4.3)

The GWS–invariant dual string tensor

σ̃φ
µν =

1

2π
[∂µ, ∂ν ] arg φ (4.4)

describes the embedding of (singular) stringlike vortex cores in (4.1) in analogy with (2.4).

Its non-Abelian and GWS–invariant extension generalizes Eq. (4.4) to SUL(2),

Σ̃i
µν=

i

π
Tr
[
τ̂ i
(
U†[∂µ, ∂µ]U

)]
≡ − 1

8π
ǫijk
(
~ej · [∂µ, ∂ν ]~e k

)
(4.5)

The (singular) codimension two surfaces described by (4.5) in R
4 are world lines of stringlike

vortex cores. The boundaries of these surfaces are curves in R
4 that describe the world

lines of pointlike structures including the cores of Wu-Yang type magnetic monopoles.
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Note that in (4.1) the orthogonal triplet ~ei only appears thru the topological structures

that are described by the tensors (4.4) and (4.5). This leaves us with seventeen regular and

manifestly SUL(2) × UY (1) gauge invariant field variables: The original gauge symmetry

has been entirely eliminated by the change of variables and without any gauge fixing. The

only surviving local gauge invariance of (4.1) is the novel internal Uint(1) gauge symmetry

(3.15), that now defines the Maxwellian gauge symmetry of (4.1). In particular, since there

are no local remaining gauge symmetries to be broken there are no issues with Elitzur’s

theorem. Furthermore, since ρ ≥ 0 there are no discrete symmetries to be broken by

the v.e.v. of ρ. But if the minimum of the potential occurs at ρ = 0 the supercurrents

are massless, and if the minimum occurs at ρ 6= 0 three of the supercurrents acquire a

nonvanishing mass.

Note that if one overlooks topological structures the functional form of the Lagrangian

(4.1) coincides with that of the original Lagrangian in the unitary gauge, even though here

no gauge fixing has taken place.

The GWS–gauge invariant W–bosons are W±
µ = J±

µ , and Z–boson and photon Aµ are

Zµ = cos θW J3
µ − sin θW Yµ , (4.6)

Aµ = sin θW J3
µ + cos θW Yµ , (4.7)

where θW is the Weinberg angle,

sin θW =
g′√

g2 + g′2

Under the internal Uint(1) gauge symmetry (3.15) the W–boson field transforms as a

charged vector field. From (3.15) and (4.7) we conclude that the Z-boson is a singlet

while for the photon we get

Uint(1) : Aµ → Aµ +
2

g′g

√
g2 + g′2 ∂µ ωc . (4.8)

In the case of a singular ωc this gauge transformation acts on the Abelian field strength

tensor as follows,

Fµν ≡ ∂[µ,Aν] → Fµν +
4π

g′g
· n
√

g2 + g′2 σ̃Dirac
µν , (4.9)

where

σ̃Dirac =
1

2π
[∂µ, ∂ν ]ωc

The location of the (singular) Dirac worldsheet describes an oriented two-dimensional man-

ifold (in R
4) at which the transformation function ωc has a singularity. Since the string

(in R
3) must be unobservable we arrive at the quantization of the worldsheet pre-factor

in (4.9) in terms of elementary magnetic charge 4π/e. In this manner the compactness of

the internal group provides us with the familiar identification of the electric charge,

e = g sin θW .
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As an example, the Higgs field of a static Nambu monopole [12] is

Φ = ηf(r)

(
cos θ/2

eiϕ sin θ/2

)
(4.10)

where (r, θ, ϕ) are spherical coordinates. The singular structures (4.4), (4.5) are σφ
µν = 0,

Σ+
µν = 0, and the string

Σ3
µν = δ(x1)δ(x2)θ(x3)[δµ3δν4 − δµ4δν3] (4.11)

ends at the world line of the monopole, located at r=0. The asymptotic behavior of the

monopole’s fields [12],

g ~Wµ = −~e3 × ∂µ~e3 − ~e3 cos2 θW ξµ , (4.12)

g′Yµ = sin2 θW ξµ , (4.13)

together with (4.10) yields for the supercurrents (3.9), (3.10) and (3.11) the asymptotic

behaviours

J+
µ = 0 (4.14)

gJ3
µ = g′Yµ = sin2 θW ξµ (4.15)

so that asymptotically

Zµ = 0

Aµ = sin2 θW

e
ξµ ,

ξµ = −i(χ†
1∂µχ1 − ∂µχ†

1χ1) = (1 − cos θ)∂µϕ

where ξµ is the conventional field of the Dirac monopole. The singularity structures show

that the monopole possess the non-Abelian charge 4π/g while the magnetic hypercharge

(i.e. the charge with respect to the Y -field) is identically zero, consistent with known

results [13].

In our variables, the gauge invariant ’t Hooft tensor [14] can be written as

Gµν ≡ ~Gµν · ~e3 −
1

g
(~e3 · Dµ~e3 × Dν~e3) = ∂[µ,J

3
ν] (4.16)

where Dµ is the SUL(2) covariant derivative (3.4). The ’t Hooft tensor relates to the

current jN
µ that describes the world trajectory C of the Nambu monopole,

∂νG̃µν =
4π

g
jN
µ ≡ 4π

g
·
∫

C
dyµ δ(4)(x − y) , (4.17)

The electroweak model also possesses various string solutions [13] including Z–vortices

and W–vortices [15, 16] and superconducting strings [17]. For example, the Z-string [15, 13]

has a singularity only in the Abelian tensor (4.4): ~Σµν = 0 and

σφ
µν = δ(x1)δ(x2)[δµ3δν4 − δµ4δν3] , (4.18)
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while the W-string [16, 13] leads to Σ3
µν = 0, σφ

µν = 0 and

Σ+
µν = eiγδ(x1)δ(x2)[δµ3δν4 − δµ4δν3] , (4.19)

where γ is a phase.

Finally, we note that a representation of electroweak Lagrangian in terms of gauge

invariant variables has also been considered in [18]. But the approach introduced there

is quite different from the present one. We also draw attention to the strong coupling

interpretation of electroweak Lagrangian proposed in [19].

5. Conformal Geometry

We now propose the Lagrangian (4.1) a generally covariant interpretation. For this we

analytically continue to Minkowski space with signature (−+++) and interpret ρ2 in (4.1)

as a dilaton i.e. as the conformal scale of a locally conformally flat metric tensor [6],

Gµν =
(ρ

κ

)2
ηµν (5.1)

Here ηµν is the flat Minkowski metric. Since ρ has the dimensions of mass, we introduce

the a priori arbitrary mass parameter κ to ensure that the metric tensor has the correct

dimensionality.

We accept the prescription in [20], to analytically continue the conformal scale (in the

case of asymptotically Euclidean manifolds [20]) according to ρ = 1 + ξ → 1 − iξ, when

identifying the Minkowski signature metric tensor.1 We then conclude that the Minkowski

signature Lagrangian (4.1) can be given the following manifestly generally covariant inter-

pretation,

LWS =
√
−G

{
1

16πG
(R − 2Λ) + LM

}
(5.2)

with the matter Lagrangian LM

LM = −1

4
GµρGνσ ~Gµν

~Gρσ−
1

4
GµρGνσFµνFρσ−κ2(g2+g′

2
)GµνZµZν−κ2g2GµνW+

µ W−
ν (5.3)

We have here introduced parameters G = 3/(8πκ2) and Λ = (9λ)/(8πG) and for simplicity

of notation the tensors ~Gµν and Fµν now contain (4.5) and (4.4) respectively.

The result (5.2), (5.3) re-interprets the electroweak theory as a generally covariant

gravity theory with massive vector fields Z and W± and the (massless) photon Aµ.

Note that in (5.3) we have removed the (bare) Higgs mass term that is present in (3.1),

as the Higgs mass term is no longer neeeded in order for the theory to acquire its desired

physical properties. In terms of the present variables the correctly normalized masses for

Z and W± are provided by the couplings g and g′ and the parameter κ, with no reference

to the structure of the Higgs potential and/or the mass of the Higgs. We also note that the

1We note that the prescription has thus far been properly justified only in the case of pure Einstein

action.
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location of structures such as vortex and monopole cores where ρ = 0 can be interpreted

in terms of spacetime singularities.

We are now in a position to analyze the ground state structure of the electroweak

theory in the present variables. For this we first note that in the ground state the massive

vector fields Zµ and W±
µ and the photon field Aµ all must vanish. Consequently the ground

state is determined by minimizing the gravitational contribution (5.2). This leads us to

the de Sitter metric in its original form,

ds2 =

(
ρ2

κ2

)
ηµνdxµdxν =

ηµνdxµdxν

[
1 + 4π

9 GΛ · x2
]2

where the conformal scale is a solution to the following equation of motion of “λφ4” theory,

−�

(ρ

κ

)
− 8 · 4π

9
GΛ

(ρ

κ

)3
= 0

As a consequence in the present variables the ground state of the electroweak theory is the

de Sitter space.

If we recall that a four dimensional λφ4 scalar field theory is trivial [21] and adapt

this result to the present case, we conclude that the “cosmological constant” Λ → 0. In

this limit we recover the flat Minkowski space and the ground state value of ρ coincides

with the parameter κ. Thus, in this limit we arrive at the conventional symmetry breaking

picture of the original Weinberg-Salam model.

We also comment that if we do not follow the prescription in [20] the gravity Lagrangian

acquires the form

Lgravity =
√
−G 1

16πG
(−R − 2Λ)

This leads to a wrong sign in the Einstein equation in the presence of matter fields. Now

the ground state is anti-de Sitter space, and when we employ stereographically projected

coordinates we find

ds2 =

(
ρ2

κ2

)
ηµνdxµdxν =

ηµνdxµdxν

[
1 − 4π

9 GΛ · x2
]2

where the conformal scale emerges as a solution to the equation of motion of the following

“λφ4” equation of motion,

−�

(ρ

κ

)
+ 8 · 4π

9
GΛ

(ρ

κ

)3
= 0

We conclude this Section with the following comments: The derivation of (5.2), (5.3)

employs the separation between isospin and hypercharge. In parallel with spin-charge sep-

aration in strongly correlated electron systems [4]-[6] it becomes natural to interpret (5.2),

(5.3) as a description of the electroweak theory in a strongly coupled/strongly correlated

(material) regime. From the point of view of the original electroweak theory, the La-

grangian (5.2), (5.3) should now be interpreted in terms of an effective Lagrangian which

has been computed in the strongly coupled/strongly correlated regime using the covari-

ant background field formalism. The full effective Lagrangian accounts for all quantum
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fluctuations in the fields of the original tree-level electroweak Lagrangian (3.1). But since

its explicit form is not available beyond a few leading terms in a loop expansion, we have

to resort to an indirect analysis: By employing general arguments of gauge invariance we

expect that in terms of the original variables the full effective Lagrangian is a functional of

the background fields and their background covariant derivatives. In the low momentum

infrared limit where we can ignore the higher order derivative contributions, and since the

full result is unknown to us, we may for simplicity proceed by considering the infrared limit

in its lowest order. This limit coincides with (5.2), (5.3). After all, the original classical

Lagrangian should be an important ingredient of the full quantum Lagrangian!

On the other hand, from the point of view of duality arguments [7] it becomes attractive

to view the gravity Lagrangian (5.2), (5.3) as a weak field and short distance limit of a more

complete gravity theory. For example, the locally conformally flat form of the metric tensor

(5.1) could be interpreted as the short distance limit that emerges from a (renormalizable)

higher derivative gravity theory with a Lagrangian that contains the following terms,

LW =

√
−G

16πG
(R − 2Λ) +

√
−G · γ W 2

µνρσ

Here W 2
µνρσ is the Weyl tensor. In the short distance limit the one-loop β-function for

γ sends this coupling to infinity [22]. This enforces asymptotically at short distances the

condition

Wµνρσ ∼ 0

which implies that locally, and in the absence of space-time singularities, the short-distance

metric tensor in this more complete gravity theory assumes the conformally flat form (5.1).

6. Summary

In summary, we have shown that in the Weinberg-Salam model the SUL(2)×UY (1) gauge

dependence can be completely eliminated by a mere change of variables and without any

gauge fixing. As a consequence issues related to Elitzur’s theorem become obsolete. The

ensuing Lagrangian describes the electromagnetic interactions of the gauge invariant and

massive W and Z bosons. Furthermore, when we interpret the Higgs field as a dilaton

in a locally conformally flat spacetime, the electroweak Lagrangian acquires a generally

covariant form and the vector bosons receive their correct masses with no reference to any

symmetry breaking by a Higgs potential. Moreover, the ground state can be interpreted as

the four dimensional de Sitter space. However, this interpretation assumes that we adopt

the description of [20]. Otherwise, the ensuing Einstein equation has a wrong sign for the

matter coupling, and the gravity interaction becomes repulsive with anti-de Sitter space as

the ground state of the theory.

We hope that our manifestly gauge invariant formulation of the electroweak Lagrangian

becomes valuable in properly interpreting the structure of the electroweak transition which

is soon to be revealed at LHC.
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