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Plasma comprises over 99.9 per cent of known matter in the Universe. However, among
the different states of matter its physical properties are the least understood. This
is largely due to a highly complex and nonlinear behaviour, which makes theoretical
investigations quite difficult. Particularly notorious are the instabilities that hamper
plasma confinement in thermonuclear fusion energy experiments [1].

In the present Letter we consider the electromagnetic interactions within a charge
neutral plasma, with an equal number of negative and positive charge carriers. We
propose a first principles field theory model to describe the fluid dynamical properties
of this plasma, and find results that challenge certain widely held views on plasma
behaviour. In particular, we argue that stable self-confining plasma filaments can exist,
and are described by topologically nontrivial knotted solitons.

In magnetohydrodynamics [1] the geometrical properties of an electrically neutral
plasma are conventionally described using a single-fluid approximation. The individual
charged particles contribution is described collectively by the hydrostatic pressure p,
which according to standard kinetic theory relates to the kinetic energies of the individual
particles p ∝ mv2. The equation of motion then follows from the properties of the
pertinent energy-momentum tensor Tµν , the spatial part of its divergence coincides with
the external dissipative force which leads to the Navier-Stokes equation

ρ
d~U

dt
= −∇p + (∇× ~B) × ~B + η∇2 ~U2 (1)

Here ~U is the bulk (center of mass) velocity of the plasma, and η is the coefficient of
viscosity. The plasma evolves according to (1), dissipating its kinetic energy by the
viscous force. This force is present whenever the plasma is in motion but ceases when
the plasma reaches a magnetostatic equilibrium configuration. In that limit the Navier-
Stokes equation reduces to a balance relation between the gradient of the hydrostatic
pressure and the magnetic force,

∇p = (∇× ~B) × ~B

Ideally, one might expect that under proper conditions a plasma in isolation becomes
self-confined due to the currents that flow entirely within the plasma itself. But this
appears to be excluded by a simple virial theorem [1] which suggests that any static
plasma configuration in isolation is dissipative. As a consequence of such apparently
inborn instabilities, strong external currents are then commonly introduced to confine a
plasma in laboratory experiments.

We now argue that there are important non-linear effects which are not accounted for
by a structureless mean field variable such as the pressure p. These nonlinearities have
their origin in the electromagnetic interactions between the charged particles within the
plasma. They remain hidden when the energy-momentum tensor relates to the kinetic
energies of the individual particles, but become visible once we recall the familiar but
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nontrivial relation between the kinetic momentum m~v and the canonical momentum ~p

of a charged point particle,
m~v = ~p − e~A

where ~A is the electromagnetic vector potential. We propose that when these electro-
magnetic forces within the plasma are properly accounted for, the ensuing field theory
model has the potential of supporting stable soliton-like configurations which describe
helical, self-confined structures within the plasma medium.

Our starting point is a natural kinetic field theory model of a two-component plasma
of electromagnetically interacting charged point particles such as electrons and deuterons.
In natural units the classical action is

S =
∫

dtd3x

[

iψe
∗(∂t + ieAt)ψe + iψi

∗(∂t − ieAt)ψi −
1

2m
|(∂k + ieAk)ψe|

2

−
1

2M
|(∂k − ieAk)ψi|

2 −
1

4
F 2

µν

]

(2)

As usual Fµν = ∂µAν −∂νAµ. The ψe and ψi are two (complex) non-relativistic fields for
electrons and ions with masses m and M and electric charges ±e, respectively. Notice
that we describe both charged fields by macroscopic (Hartree-Fock) wave functions.
This is adequate in the classical Bolzmannian limit which is relevant in conventional
plasma scenarios [1]. The action (2) determines our first principles description of a non-
relativistic plasma. Its magnetohydrodynamical properties are governed by the pertinent
energy-momentum tensor Tµν , which can be constructed from (2) in a standard manner.
When we include the contributions that account for the bulk motion of the plasma
medium, this leads to an appropriate version of the Navier-Stokes equation (1). Here
we are interested in the ensuing static equilibrium configurations. These configurations
are local minima of the internal energy E, which is determined by the temporal T00

component of the energy-momentum tensor. For a stationary plasma fluid (2) we get
from (2)

E =
∫

d3x

[

1

2µ

{

sin2α |(∂k + ieAk)ψe|
2 + cos2α |(∂k − ieAk)ψi|

2

}

+
1

2
B2

i + g(ψe
∗ψe − ψi

∗ψi)
2

]

(3)

Here µ = m · sin2α = M · cos2α is the reduced mass and Bi = 1

2
ǫijkFjk is the magnetic

field. The quartic potential is the remnant of the Coulomb interaction with g an effective
coupling constant. It emerges when we first use Gauss’ law to eliminate the electric
field, and then recall that in any realistic plasma the Debye screening radius is small in
comparison to any characteristic length scale of interest.

The free energy (3) is subjected to the conditions that the plasma is electrically
neutral with an equal (large) number ne of electrons and ni of ions, ne = ni and the
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total number of charge carriers in the volume V remains intact ne + ni = N . These
conditions can be implemented by adding appropriate chemical potential terms to (3) in
the usual fashion. But for simplicity we here account for them as constraints, imposed
by appropriate boundary conditions. Besides the terms that we have displayed in (3)
there can also be additional interaction terms for the charged fields. Such terms are
usually induced by thermal fluctuations and finite density effects, or by gravitational
interactions. However, according to standard universality arguments we expect the
main features of (3) to persist at temperatures and distance scales which are relevant in
conventional plasma scenarios.

We propose that (3) yields an adequate approximation for a non-relativistic plasma in
a kinetic regime where the thermal energy is sufficiently high to prevent the formation of
charge neutral bound states, which correspond to hydrogen atoms in the case of electrons
and deuterons. Such bound states are present at lower temperatures, and their presence
can be accounted for by terms of the form

Ebs =
∫

d3x

[

1

2
·

1

m+M
(∂kΦ)2 + λ · Φψeψi + λ̄ · Φψ∗

eψ
∗
i

]

Here Φ a real scalar field that describes a charge neutral bound state of ψe and ψi. At
a sufficiently high temperature this bound state degree of freedom decouples, and (3)
becomes adequate for describing the bulk properties of the plasma.

Since ne = ni we have overall charge neutrality. However, there can be local charge
density fluctuations that should not be ignored. Indeed, we now proceed to argue that
static charge density fluctuations are naturally present in (3). These fluctuations accom-
pany stable, static solitons which describe filamental self-confined structures within the
plasma. For this we first note that the different contributions in (3) respond differently
to a scaling ~x → λ~x. The kinetic terms scale in proportion to λ and the Coulomb
potential in proportion to λ3, but the magnetic energy scales like λ−1. Consequently the
existence of nontrivial, non-dissipative plasma configurations in (3) can not be excluded
by simple virial arguments, quantitative investigations become necessary.

We start by observing that the vector potential Ak enters at most quadratically.
Consequently it can be eliminated: We vary (3) w.r.t. Ak and get

Ak =
1

2e
·

1

sin2α |ψe|2 + cos2α |ψi|2

[

i sin2α · (ψe
∗∂kψe − ∂kψe

∗ψe)

− i cos2α · (ψi
∗∂kψi − ∂kψi

∗ψi) −
2µ

e
· ǫkij∂iBj

]

(4)

which determines Ak in terms of an iterative gradient expansion, in powers of derivatives
in the charged fields. We introduce new variables by

( ψe , ψi ) = ρ · ( cosα · sin
θ

2
eiϕ , sinα · cos

θ

2
eiχ ) (5)
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For reasons that will soon become obvious we have chosen these variables so that they are
natural for describing tubular field configurations, with ϕ and χ related to the toroidal
and poloidal angles and θ a shape function that measures the distance away from the
centerline of the tube. We compute the free energy (3) to the leading order in a self-
consistent gradient expansion, where we keep only terms which are at most fourth order
in the derivatives of the variables (5). This approximation is adequate in conventional
plasma scenarios where the fields are relatively slowly varying. We start by determining
Ak from (4) iteratively in the variables (5). We substitute the result in (3), and by
defining a three-component unit vector ~n = (cos(χ+ϕ) sin θ , sin(χ+ϕ) sin θ , cos θ) we
finally get for the free energy

E =
∫

d3x

[

1

2
·

1

m+M
·
{

(∂kρ)
2 + ρ2 ·|∂k~n|

2

}

+
1

4e2
(~n·∂i~n×∂j~n)2 +

gρ4

4
(n3−cos 2α)2

]

(6)
We note that since m and M are both nonvanishing, overall charge neutrality implies
that asymptotically θ → 2α 6= nπ. Since ρ → const. 6= 0 asymptotically (see below),
the Coulomb interaction then yields a mass term for the variable θ. We also note that
(6) naturally embodies a helical structure, described by the Hopf invariant [2]. To the
relevant order in our gradient expansion

QH = −
1

e24π2

∫

d3x ~B · ~A = −
∫

d3x ∇cos θ ·
∇ϕ

2π
×

∇χ

2π
= ∆ϕ · ∆χ (7)

Here ∆ϕ resp. ∆χ denotes the (2π) change in the pertinent variable over the (would-be)
tube, when we cover it once in the toroidal and poloidal directions over a magnetic flux
surface with constant θ.

The field ρ is a measure of the particle density in the bulk of the plasma. If its
average (asymptotic) value <ρ2>= ρ2

0
becomes too small, the collective behaviour of the

plasma will be lost and instead we have an individual-particle behaviour of the charged
constituents, interacting via Coulomb collisions. Consequently we select the average ρ2

0

so that it acquires a sufficiently large value in the medium. Local charge fluctuations
then occur in regions where the unit vector ~n becomes a variable so that θ 6= 2α.
According to our adiabatic approximation |∂k~n| is a slowly varying bounded function
over the entire charge fluctuation region, and in particular it vanishes outside of the
fluctuation region. When we inspect the ρ-equation of motion that follows from (6) we
find that it can be related to a Schroedinger equation for the lowest energy scattering
state in an external potential ∝ |∂k~n|

2. From this we then conclude that |ρ(~x)| never
vanishes; it is bounded from below by a non-vanishing positive value which is related to
the ensuing scattering length. This implies that if we average the free energy (6) over
ρ(~x), to the relevant order in our gradient expansion the result can be related to the
universality class determined by the Hamiltonian

H =
∫

d3x

[

γ · |∂k~n|
2 +

1

4e2
(~n · ∂i~n× ∂j~n)2 + λ · (n3 − cos 2α)2

]

(8)
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where γ, λ are nonvanishing positive constants, proportional to the scattering length
of our Schroedinger equation. This Hamiltonian is known to support stable knotlike
solitons [2]. In particular, since the third (Coulomb) term is positive it does not interfere
with the lower bound estimate derived in [4]. This estimate states that the first two terms
in (8) are bounded from below by the fractional power |QH |

3/4 of the Hopf invariant.
Even though we do not expect that in the case of (6) this lower bound estimate remains
valid as such, we nevertheless conclude that when QH 6= 0 the energy (6) admits a
nontrivial lower bound; the conclusions from the virial theorem in [1] should not be
adapted too hastily.

The properties of (8) with λ = 0 have been studied in [2]-[8]. In particular, the
numerical simulations in [7], [8] clearly confirm the existence of stable, knotted and
linked solitons with a nontrivial Hopf invariant [2]. The present considerations firmly
suggest that the conclusions in [2]-[8] prevail also in the case of (6). Indeed, we have
tentatively verified that similar solitons are present in (6), by numerically constructing
a line vortex soliton in this model; we describe our solution in figure 1. These soli-
tons then become natural candidates for describing filamental and toroidal structures
in the plasma, including coronal loops above the solar photosphere and the design of
magnetic geometries in thermonuclear fusion energy experiments. The numerical sim-
ulations reported in [7]-[9] are very extensive, and clearly reveal the complexity of the
problem. Accordingly the interest has thus far mainly concentrated on the identification
of soliton geometries, very little is still known about the solitons detailed physical prop-
erties. Consequently at this time we are not in a position to present definite physical
predictions in the context of actual applications, high precision numerical methods still
remain under active development [7], [8] and we have to limit ourselves to a few general
remarks: In the numerical simulations that have been completed thus far, it has been
found that for generic integer values (∆ϕ,∆χ) = (n,m) in (7) the λ = 0 solitons of (8)
form involved knotted and linked structures. Such complex geometries might be natural
in a number of applications, for example when modelling coronal loops. But they might
not be of any immediate practical interest for the design of plasma geometries in fusion
energy experiments, where planar toroidal configurations are preferable. Indeed, there
are also a few torus-shaped solitons which are essentially planar. These occur for values
(n,m) = (1, 1), (2, 1), (1, 2), (2, 2) [8]. The simplest one is (1, 1) but it appears to have
an energy density that peaks at the toroidal symmetry axis. As such this may be an
advantage in designing actual fusion reactors. But it could also become problematic, as
it may interfere with the construction of an external torus-shaped coiling system which
should be needed to create the soliton. On the other hand, the (2, 1) soliton seems to
have a torus-shaped energy density distribution which vanishes at the symmetry axis
and peaks at the centerline of the torus (see [8]). Since this soliton is also quite sturdy
[8], it is a natural candidate e.g. for designing magnetic geometries for thermonuclear
fusion energy purposes. In particular, this configuration strongly suggests that for a sta-
ble, toroidal planar geometry the safety factor [1] in the bulk of the plasma should not
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exceed q ≈ 2. A configuration with a higher value for q tends to adjust itself towards a
geometrical shape which is not planar; see the computer animations in the www-address
of reference [8].

In conclusion, we have argued that an electrically neutral conducting plasma can form
stable, self-confining structures. This is due to soliton-like solutions, which we have
shown will appear when we properly account for the nontrivial electromagnetic interac-
tions within the plasma. We have proposed that our solitons can become relevant in a
number of practical scenarios, including coronal loops and the design of magnetic geome-
tries in thermonuclear fusion energy experiments. However, in order to assess the impact
of our findings, detailed numerical investigations are necessary. Unfortunately the simu-
lations remain highly complex, even with the present day supercomputers. Consequently
we have not been able to reliably confirm that parameters such as the asymptotic density
ρ0 and the coupling g can indeed be selected appropriately for the solitons to have direct
technological relevance for example in the design of magnetic geometries for energy pro-
ducing thermonuclear fusion reactors. But since over 99.9 per cent of all known matter
in the Universe exists in the plasma state, there are no doubt numerous scenarios where
our results can become important. Besides astrophysical applications or quark-gluon
plasma experiments, these might include even an explanation to the highly elusive ball
lightning.
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communicating the results in [8] prior to publication. We thank the Center for Scientific
Computing in Espoo, Finland for the use of their computers. The work of L.F. has been
supported by grants RFFR 99-01-00101 and INTAS 9606, and the work of A.J.N. has
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Figure Caption

figure 1: An example of a numerically constructed tubular line vortex solution of
(6), with energy density plotted as a function of the distance from the tubular center-
line. We use standard cylindrical coordinates (r, φ, z) so that the tubular center-line
coincides with the z-axis. For simplicity we have taken a limit of large ion mass which
sends 2α → π. All numerical parameters in (6) are O(1) and the helical structure is
characterized by ϕ+ χ = φ+ 0.6 z.
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