

Общероссийский математический портал

Л. Д. Фаддеев, К теории устойчивости стационарных плоскопараллельных течений идеальной жидкости, 3an. научн. cem. ЛОМИ, 1971, том 21, 164–172

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 195.218.150.2

30 июня 2017 г., 15:35:57

Л.Д.Фаддеев

К ТЕОРИИ УСТОЙЧИВОСТИ СТАЦИОНАРНЫХ ПЛОСКО-ПАРАЛЛЕЛЬНЫХ ТЕЧЕНИЙ ИДЕАЛЬНОЙ ЖИДКОСТИ

Настоящая статья представляет собой изложение моего доклада на семинаре О.А.Ладыженской по гидродинамической устойчивости, который я сделал в марте 1971 г. В нем шла речь о спектральной задаче, возникающей в теории устойчивости плоско-параллельных стационарных течений идеальной жидкости. Мое внимание к этой задаче привлек В.И.Арнольд, и содержание статьи возникло в нашей переписке. Точнее, здесь приводятся мои, к сожалению неполные, ответы на его вопросы. Ответственность за эти ответы, конечно, полностью лежит на мне. Я благодарен В.И.Арнольду за стимулирующую переписку.

І. Постановка задачи.

Мы будем исследовать спектр линейного уравнения, возникающего при линеаризации уравнения Эйлера гидродинамики идеальной жидкости в окрестности заданной функции. Формулировка этой задачи будет отличаться от общепринятого уравнения Орра-Зоммерфельда (см. [1]), и поэтому я начну с краткого ее вывода.

Рассмотрим двумерное уравнение Эйлера для функции тока

$$\frac{\partial}{\partial t} \Delta \Psi + \left\{ \Delta \Psi, \Psi \right\} = 0 , \qquad (I)$$

где

$$\left\{ \, \dot{r},\, \dot{d} \, \right\} = \frac{9 \, \dot{\xi}}{9 \, \dot{r}} \, \frac{9 \, \dot{d}}{9 \, \dot{d}} \, - \frac{9 \, \dot{d}}{9 \, \dot{r}} \, \frac{9 \, \dot{\xi}}{9 \, \dot{d}} \, .$$

Будем считать, что это уравнение задано в прямоугольной области

$$0 \le \gamma \le 1$$
, $-\mathfrak{D} \le \xi \le \mathfrak{D}$, где a) $\mathfrak{D} = \infty$; б) $\mathfrak{D} = \mathfrak{K}$

и что решения удовлетворяют определенным граничным условиям. Условия по ξ : ограниченность при $|\xi| \to \infty$ в случае а) и периодичность $\Psi(\xi + 2\pi, \eta) = \Psi(\xi, \eta)$ в случае б). По переменной η можно использовать произвольные "самосопряженные" условия, например, нулевые $\Psi(\xi, 0) = \Psi(\xi, 1) = 0$ или периодические $\Psi(\xi, \eta + 1) = \Psi(\xi, \eta)$.

Пусть $\Psi(\gamma)$ — заданная гладкая функция, описывающая исследуемое на устойчивость стационарное плоско-параллельное течение, совданное внешними силами. Уравнение (I), линеаризованное в окрестности этой функции, имеет вид

$$\frac{\partial}{\partial t} \Delta u + \frac{\partial}{\partial \xi} \Delta u \cdot \frac{\partial \varphi}{\partial \eta} - \frac{\partial}{\partial \xi} u \cdot \frac{\partial^3 \varphi}{\partial \eta^3} = 0.$$

Наша задача - исследовать соответствующую спектральную задачу

$$\lambda \Delta u = \frac{\partial u}{\partial \xi} \cdot v'' - \frac{\partial}{\partial \xi} \Delta u \cdot v, \qquad (2)$$

где мы ввели стандартное обозначение

$$v(\eta) = \frac{d\varphi(\eta)}{d\eta} = \varphi'(\eta)$$

для функции $\upsilon(\gamma)$, которая называется профилем заданного течения. Признаком неустойчивости является существование собственных значений λ с положительной вещественной частью.

Переменные в уравнении (2) разделяются и собственные функции можно искать в виде

$$\mathcal{U}(\xi, \eta) = e^{i\kappa \xi} \mathcal{U}(\eta, \kappa),$$

где $-\infty < k < \infty$ в случае а), и в случае б) числа k - целне. Спектральная задача при этом переходит в следующую

$$\lambda(u'' - \kappa^2 u) = i \kappa \left[u v'' - (u'' - \kappa^2 u) v \right], \tag{3}$$

откуда после переобозначений

$$\lambda = -i\kappa\omega$$
, $u'' - \kappa^2 u = f$

приходим к ее окончательной формулировке

$$\Delta f = v(x)f(x) + v''(x) \int_{0}^{1} G(x, y; \kappa^{2}) f(y) dy = \omega f(x). \tag{4}$$

Здесь $G(x,y,\kappa^2)$ — функция Грина оператора — $\frac{d^2}{dx^2}$

$$\left(-\frac{d^2}{dx^2} + \kappa^2\right)G(x,y,\kappa^2) = \delta(x-y)$$

с соответствующими краевнми условиями, и для удобства здесь и ниже мы используем обозначения $\mathfrak{X},\mathfrak{Y},\mathfrak{F}$ для переменных, родственных с γ .

Переход от уравнения (3) к интегральному уравнению (4) при всей его тривиальности является очень удобным. Действительно, для спектральной задачи, записанной в форме (4), очевидно присутствие непрерывного спектра. В то же время, непрерывный спектр в дифференциальном уравнении (3) часто пропускают, что приводит к недоу-

мениям и парадоксам, особенно в случае, когда другой спектр отсутствует (см.[I],последний абзац стр. I5I и \S 8.3, 8.4). В дифференциальной формулировке, собственные функции $\mathfrak{U}(\mathfrak{X},\mathfrak{X}_o)$ непрерывного спектра даются функцией Грина уравнения Орра-Зоммерфельца

$$R''(x,y;\mu) - \kappa^2 R(x,y;\mu) - \frac{v''(x)}{v(x) - \mu} R(x,y;\mu) = \delta(x-y)$$

при $y = x_0$ и $\mu = v(x_0) + i0$. На это обстоятельство специально обратил внимание Кэйс [2] . Вопросы Арнольда были сформулированы сразу в терминах оператора A .

В нашей формулировке признаком неустойчивости является появление собственных значений с положительной мнимой частью. Вследствие вещественности оператора А его спектр симметричен относительно вещественной оси, так что комплексные собственные значения появляются комплексно-сопряженными парами.

2. Общие свойства оператора Д и его спектра.

Оператор A входит в общий класс операторов, называемых в спектральной теории моделью Фридрихса [3], [4]. Запишем его в виде

 $A = A_0 + A_1$

где

$$A_{o}f(x) = v(x)f(x) -$$

оператор умножения на вещественную функцию, самосопряженный в $\mathscr{L}_{\mathbf{2}}$ (0,1) , а $A_{\mathbf{1}}$ - несамосопряженный интегральный оператор

$$A_1 f(x) = v''(x) \cdot \int_{a}^{b} G(x, y; \kappa^2) f(y) dy.$$

Оператор A_{o} имеет абсолютно-непрерывный спектр. Его собственные функции можно выбрать в виде δ -функций

$$\oint_0 (x, x_0) = \delta(x - x_0).$$

Соответствующие собственные значения $\omega = \upsilon(\infty_o)$, $0 \le \infty_o \le 1$, пробегают интервал \Im значений функции $\upsilon(\infty)$. Общие результати [3], [4] позволяют утверждать, что оператор A имеет тот же непрерывный спектр, что A_o , и, кроме того, возможно еще и дискретный спектр точки накопления которого могут лежать только на \Im .

Если $U''(\mathfrak{X}) \neq 0$, то оператор $A_{\mathbf{I}}$ симметризуем и наша спектральная задача сводится к самосопряженной. В этом случае спектр оператора A вещественен, что соответствует устойчивости. Изменение знака $U''(\mathfrak{X})$ — существование точки перегиба профиля — является, таким образом, необходимым условием неустойчивости. Этот результат хорошо известен в гидродинамике под названием теоремы

Релея.

Исследование спектра, приводящее к сформулированному выше утверждению, основано на интегральном уравнении для его резольвентн. Если искать оператор

$$\Gamma(\mu) = (A - \mu I)^{-1}$$

как интегральный оператор с ядром вида

$$\Gamma(x,y;\mu) = \frac{\delta(x-y)}{v(x)-\mu} - \frac{1}{v(x)-\mu} v''(x) T(x,y;\mu) \frac{1}{v(y)-\mu}, \qquad (5)$$

то для ядра $T(\mathbf{x}, \mathbf{y}; \boldsymbol{\mu})$ будет выполнено следующее интегральное уравнение

$$T(x,y;\mu) = G(x,y;\kappa^2) - \int_0^1 G(x,\xi;\kappa^2) \frac{v''(\xi)}{v(\xi)-\mu} T(\xi,y;\mu) d\xi. \quad (6)$$

Это уравнение типа Фредгольма, и особенности решения $T(x,y,\mu)$, а вместе с ним и резольвенты $T(x,y,\mu)$, помимо явно указанных в (5), находятся в таких μ , при которых имеются нетривиальные решения однородного уравнения

$$-\Psi(x) = \int_{0}^{1} G(x, y; \kappa^{2}) \frac{\sigma''(y)}{\sigma(y) - \mu} \Psi(y) dy \equiv M(\mu) \Psi(x). \tag{7}$$

Будем называть такие μ особыми точками уравнения (6). Для любого неособого ω +iO из интервала η формула

$$f(x,x_o) = \delta(x-x_o) - \frac{v''(x)}{v(x)-v(x_o)-i0} T(x,x_o;v(x_o)+i0), \quad v(x_o) = \omega$$

дает явное выражение для собственной функции непрерывного спектра оператора A, соответствующей собственной функции $f_o(x,x_o)$ оператора A_o . Именно эти функции часто не принимают во внимание, в то время как они составляют основную часть собственных функций оператора A.

Возвращаясь от \S к $\mathfrak U$, мы видим, что формулы

$$u(x,x_0) = -T(x,x_0; v(x_0)+i0), \lambda = -i\kappa v(x_0)$$

дают явное выражение для собственных функций и соответствующих собственных значений в постановке (3) спектральной задачи. Это

согласуется с цитированным выше утверждением Кейса, так как уравнение (6) для ядра $T(x,y;\mu)$ можно интерпретировать как интегральные уравнения для функции Грина $R(x,y;\mu)$.

Более точно, оператор $M(\mu)$ является вполне непрерывным в банаховом пространстве B_{ω} , которое получается при замыкании множества гладких функций в гельдеровской норме с показателем ω , $0<\omega<1$, аналитически зависящим от μ , меняющегося на комплексной плоскости S_{σ} с купюрой по интервалу J . Предельные значения при $\mu \to \omega \pm i0$, $\omega \in J$ для оператора $M(\mu)$ существуют при всех ω , для которых $U'(x) \neq 0$, где $U(x) = \omega$. В окрестности критических ω оператор $M(\mu)$ имеет особенность типа $(\mu - \omega)^{-1/2}$, причем $\lim_{\mu \to \infty} (\omega - \mu)^{1/2}$ $M(\mu)$ конечномерен. При больших μ оператор $M(\mu)$ мал.

Общие теоремы об аналитических вполне непрерывных операторах позволяют утверждать, что множество особых точек μ дискретно и может иметь точки накопления только на \mathfrak{I} . Нетрудно убедиться, что особые точки вне \mathfrak{I} являются собственными значениями оператора \mathfrak{A} . Этим и заканчивается доказательство сформулированного выше утверждения о структуре спектра оператора \mathfrak{A} .

3. Исследование дискретного спектра.

Дальнейшее исследование уравнения (7) в ряде случаев дает значительно более детальную характеристику дискретного спектра. При больших κ^2 оператор $M(\mu)$ мал, и уравнение (7) не имеет нетривиальных решений. Будем следить за появлением таких решений при уменьшении κ^2 . Вследствие аналитичности $M(\mu)$ особые точки могут впервые появиться только на купюре $\mathcal I$. Поэтому нам следует в первую очередь рассмотреть существование нетривиальных решений при $\mu = \omega^\pm i\, 0$, $\omega \in \mathcal I$.

Пусть $\mu = \omega + i0$ — особая точка и $\Psi(x)$ — соответствующее решение уравнения (7) из B_{\star} . Умножим уравнение (7) на $\psi(x) \overline{\Psi(x)} (\psi(x) - \omega + i0)^4$ и проинтегрируем результат по x. Вследствие самосопряженности $G(x, y; \kappa^2)$ мы получим справа вещественное число. Таким образом мы получаем соотношение

$$\lim_{x \to \infty} \int_{0}^{1} |\varphi(x)|^{2} \frac{v''(x)}{v(x) - \omega + i0} dx = 0$$

NIN

$$\sum_{i} |\varphi(\mathbf{x}_{i})|^{2} \frac{v''(\mathbf{x}_{i})}{|v'(\mathbf{x}_{i})|} = 0, \qquad (8)$$

где сумма берется по всем решениям уравнения $U(\mathfrak{X}) = \omega$. Если $U''(\mathfrak{X})$ не меняет знак, то из последнего равенства следует, что

 $\Psi(x_i) = 0$, так что функция $\Psi(x)(v(x)-\omega-i0)^{-1}$ имеет только слабне особенности. Из уравнения (7) следует, что такая $\Psi(x)$ на самом деле гладкая, и, дифференцируя это уравнение, мы получаем, что $\Psi(x)$ удовлетворяет дифференциальному уравнению Орра-Зоммерфельда

Покажем, что $\Psi \equiv 0$. Действительно, для нашего Ψ , которое можно считать вещественным, квадратичная форма оператора L может быть записана в виде

$$\left(\left[-\varphi, \varphi \right] \right) = \int_{0}^{1} \left[\left(\varphi' - \frac{\varphi'}{\upsilon - \omega} \varphi \right)^{2} + \kappa^{2} \varphi^{2} \right] dx = 0.$$

При выводе мы используем интегрирование по частям

$$\int_{0}^{1} \frac{v''}{v - \omega} \varphi^{2} dx = \int_{0}^{1} \left[\frac{v'^{2}}{(v - \omega)^{2}} \varphi^{2} - 2 \frac{v'}{v - \omega} \varphi \varphi' \right] dx,$$

которое имеет смысл для произвольных гладких функций $\Psi(x)$, исчезающих при $U(x)=\omega$. Мы видим, что квадратичная форма ($\lfloor \Psi,\Psi \rangle$) положительна на таких Ψ , а, следовательно, наше решение тождественно исчезает.

Таким образом, мы получили уточнение теоремы Релея: если профиль не имеет точек перегиба, то спектр абсолютно непрерывен.

Случай, когда $U''(\mathfrak{X})$ меняет знак, сравнительно нетрудно полностью разобрать, если а) функция $U(\mathfrak{X})$ монотонна; б) функция $U''(\mathfrak{X})$ имеет только один нуль, скажем в точке $\mathfrak{X}=\mathfrak{Q}$. Эти два условия явно или неявно считаются выполненными в большинетве исследований (ср.[I]). Мы приведем исследование этого случая, уточняя и дополняя рассуждения и результаты Толмиена, изложенные в [I].

В рассматриваемом случае соотношение (8) содержит одно слагаемое

$$|\Psi(x_1)|^2 \cdot v''(x_1) = 0$$
, $v(x_1) = \omega$

Если $\mathfrak{X}_4 \neq \mathfrak{A}$, то $\Psi(\mathfrak{X}_4) = 0$, и приведенные выше рассуждения приводят к тому, что $\Psi(\mathfrak{X}) \equiv 0$. Пусть теперь $\mathfrak{X}_4 = \mathfrak{A}$. Функция

$$Q(x) = \frac{v''(x)}{v(x) - v(a)}$$

при наших предположениях является гладкой и не меняет знак. Уравнение Орра-Зоммерфельда (9) может иметь нетривиальное решение только если оператор Штурма-Лиувилля

$$\psi = -\varphi'' + q(x)\psi$$

имеет отрицательный дискретный спектр. Для этого необходимо, что- бы Q(x) была отрицательна и достаточно велика. Заметим, что отрицательный спектр оператора ℓ может содержать не более одного собственного значения. Действительно, как мы уже убедились выше, квадратичная форма оператора ℓ на функциях, исчезающих в точке x = 0, имеет вид

 $(\ell \varphi, \varphi) = \int_{0}^{\pi} (\varphi' - \frac{v'}{v - \omega} \varphi)^{2} dx, \quad \omega = v(\alpha)$

и, таким образом, неотрицательна. Сужение оператора и на мно-жество функций, исчезающих в **х=0**, дает симметричный оператор с индексом дефекта (I.I). Наше утверждение следует теперь из общей теоремы М.Г.Крейна о самосопряженных расширениях неотрицательных симметрических операторов с конечными индексами дефекта (см., например, [5], стр. 143).

Будем теперь считать, что оператор ℓ имеет отрицательное собственное значение и обозначим его через $-\infty^2$, а соответствующую нормированную собственную функцию через $\chi(x)$. При изменении κ^2 от ∞ до ∞^2 оператор $\chi(\mu)$ не имеет ни одной особой точки. При $\kappa^2 = \infty^2$ такая особая точка возникает при $\mu = \upsilon(\alpha) \pm i0$. При дальнейшем уменьшении κ^2 особых точек, лежащих на χ^2 обыть не может. Это означает, что при уменьшении χ^2 , начиная от χ^2 , особые точки "срываются" с χ^2 в комплексную плоскость. Покажем это более точно. Достаточно посчитать

$$\Im m \frac{d\mu^{\pm}}{d\kappa^{2}} \Big|_{\kappa^{2} = 2\epsilon^{2}} = 6^{\pm}$$

и показать, что они имеют нужный знак. Это нетрудно сделать, используя общие формулы теории возмущений. Проще при этом посчитать $d\kappa_{_{2}}^{2}/d\mu \mid_{\mu=\pi(0)\pm io}$. Участвующие здесь функции $\mu^{\pm}(\kappa^{2})$ и $\kappa_{_{2}}^{2}(\mu)$ такие, что

$$\mu^{\pm}(x^2) = v(a) \pm i0, \quad \kappa_{\pm}^2(v(a) \pm i0) = x^2,$$

можно считать определенными при помощи уравнения

$$\Delta(\mu, \kappa^2) = 0, \tag{I0}$$

заданного на $S_3 \times K$, где K – комплексная плоскость переменной K^2 . Функция $\Delta(\mu, k^2)$ является подходящим "определителем" оператора Орра-Зоммерфельда $\ell \varphi = -\varphi'' + \frac{\upsilon''}{\upsilon - \iota} \varphi.$

Например, при нулевых граничных условиях

$$\Delta(\mu, k^2) = \Psi(1, \mu, k^2)$$
,

где $\Psi(x,\mu,\kappa^2)$ — решение уравнения $\ell \Psi = -\kappa^2 \Psi$, удовлетворяющее условиям

$$\Psi(0, \mu, \kappa^2) = 0$$
; $\Psi'(0, \mu, \kappa^2) = 1$.

Это решение является целой функцией k^2 и аналитически зависит от μ на S_3 . Точки μ = $\mathrm{U}(0)\pm i0$, $k^2=\mathrm{R}^2$ являются решениями уравнения \pm (10), и теорема о неявной функции определяет наши функции μ^\pm (k^2) и k_\pm^2 (μ). При этом k_\pm^2 (μ) является собственным значением оператора ℓ , μ μ 0, так что

$$\frac{d\kappa_{\pm}^{2}}{d\mu}\Big|_{\mu=v(a)\pm io} = \int_{0}^{1} \chi^{2} \frac{v''}{(v-\mu)^{2}} dx \Big|_{\mu=v(a)\pm io} = \int_{0}^{1} q(x) \chi^{2}(x) \frac{1}{v(x)-v(a)\mp io} dx$$

Отсюда

$$\mathcal{J}_{m} \frac{d \kappa_{\pm}^{2}}{d \mu} \Big|_{\mu = v(\alpha) \pm i \sigma} = \pm \pi \frac{\chi^{2}(\alpha) q(\alpha)}{|v'(\alpha)|}.$$

Замечая, что

sygn
$$\Im m \frac{d\kappa_{\pm}^2}{d\mu} = - sygn \frac{d\mu^{\pm}}{d\kappa^2} \Big|_{\kappa^2 = \mathcal{H}^2}$$

и вспоминая, что q(a) < 0, получаем нужное утверждение:

$$b^{+} > 0$$
; $b^{-} < 0$.

Таким образом, в рассмотренном случае спектр оператора A выглядит следующим образом: при $\kappa^2 > \varkappa^2$ спектр однократный, абсолютно непрерывный и заполняющий интервал \mathfrak{I} ; при $\kappa^2 < \varkappa^2$, кроме такого же непрерывного спектра, оператор A имеет одну пару комилексно сопряженных простых собственных значений.

Посмотрим в заключение, что можно сказать о дискретном спектре при ослаблении ограничений на профиль. Случай, когда профиль имеет несколько точек перегиба $\mathbf{x} = \mathbf{a_4}, \dots, \mathbf{a_m}$ можно рассмотреть аналогичным образом. При этом дискретный спектр, так же как и выше, может зарождаться только в точках перегиба, точнее, при $\omega = \omega_i$, где $i=1,\dots,m$. В зависимости от знака функции

$$Q_i(x) = v''(x)/(v(x)-v(a_i))$$

при $\mathfrak{X}=\mathfrak{A}_i$ точка перегиба будет "отталкивающей" ($\mathfrak{Q}(\mathfrak{A}_i)$ <0) или "притягивающей" ($\mathfrak{Q}(\mathfrak{A}_i)$ >0) . При уменьшении κ^2 , начиная с ∞ , комплексные собственные значения будут срываться с отталкивающих

точек и поглощаться притягивающими. При любых κ^2 полная кратность дискретного спектра не может превышать $\frac{m}{Q}+\frac{1}{4}$.

Значительно более серьезным ограничением является монотонность $\mathbf{v}(\mathbf{x})$. Для немонотонных профилей спектр оператора $\mathbf{A}_{\mathbf{o}}$ принобретает кратность, а условие (8) содержит несколько слагаемых, мне не удалось получить сколь-нибудь детальные результаты в этом случае. Ясно только, что "срыв" собственных значений будет промиходить уже не в точках перегиба профиля.

ЛИТЕРАТУРА

- І Линь-Цзя-цзяо, "Теория гидродинамической устойчивости",ИИЛ, Москва, 1958.
- 2 Кэйс , "Гидродинамическая устойчивость как задача с начальными данными", в сборнике "Гидродинамическая устойчивость", "Мир", Москва, 1964, стр. 37-46.
- 3 K.O.Friedrichs, "On the perturbations of continuous spectra" Comm. Pure Appl. Math. <u>I</u>, 36I-406, I948.
- 4 Л.Д.Фаддеев, "О модели Фридрихса в теории возмущений непрерывного спектра", Труди WИАН, 73, стр. 292-313, 1964.
- 5 М.А.Наймарк, "Линейные дифференциальные операторы", ГИТТЛ, Москва, 1954.