

Общероссийский математический портал

А. А. Славнов, Л. Д. Фаддеев, Инвариантная теория возмущений для нелинейных киральных лагранжианов, $TM\Phi$, 1971, том 8, номер 3, 297–307

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 195.218.150.2

30 июня 2017 г., 15:34:49

АКАДЕМИЯ НАУК СССР

Теоретическая и математическая физика

Том 8, № 3 Сентябрь

1971

Москва

Журнал основан в 1969 г.

Выходит 12 раз в год

ИНВАРИАНТНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ ДЛЯ НЕЛИНЕЙНЫХ КИРАЛЬНЫХ ЛАГРАНЖИАНОВ

А. А. Славнов, Л. Д. Фаддеев

Теория возмущений для нелинейных киральных лагранжианов построена в терминах инвариантных, не зависящих от параметризации величин.

Мы рассматриваем нелинейные лагранжианы типа кирального лагранжиана Вейнберга [1]

$$\mathscr{L} = \frac{1}{2} \frac{\partial_{\mu} \pi^{i} \partial_{\mu} \pi^{i}}{(1 + \lambda^{2} \pi^{2})^{2}} + \mathscr{L}'(\psi, D_{\mu} \psi), \tag{1}$$

 λ — константа размерности длины, $\mathscr{L}'(\psi, D_{\mu}\psi)$ — лагранжиан всех прочих полей ψ , взаимодействующих с полем π и реализующих унитарное представление изотопической группы. Выражение $D_{\mu}\psi$ представляет собой «ковариантную» производную поля ψ , явный вид которой зависит от соответствующего представления, задаваемого генераторами T^a ,

$$D_{\mu}\psi = \partial_{\mu}\psi + \varepsilon_{ikj}2\lambda^{2} \frac{\pi^{k}\partial_{\mu}\pi^{j}}{1 + \lambda^{2}\pi^{2}} T^{i}\psi. \tag{2}$$

Хорошо известно (см., например, [2] и цитированную там литературу), что этот лагранжиан позволяет воспроизвести результаты киральной алгебры токов при низких энергиях, если рассматривать его в приближении деревьев. Обычно этим приближением и ограничиваются. Мы же собираемся отнестить к этому лагранжиану более серьезно и попытаемся развить для него последовательную схему квантования.

Важным стимулом для этого является тот факт, что лагранжиан (1) получает красивое геометрическое толкование, если считать, что классическое поле $\pi(x)$ является функцией на пространстве-времени со значениями в самой изотопической группе (см., например, [3, 4, 5]). Изотопическая группа SU_2 представляет собой трехмерное многообразие M, которое можно себе представить, например, как трехмерную сферу в четырехмерном евулидовом пространстве. Каждому выбору локальных ко-

ординат на этом многообразии соответствует параметризация поля $\pi(x)$ набором трех функций $\pi^i(x)$, i=1,2,3. На многообразии M естественно действует группа $SU_2 \times SU_2$ посредством левых и правых сдвигов, и имеется единственная риманова метрика и риманова связность, инвариантные по отношению к этому действию. Именно эти инвариантные объекты и входят в лагранжиан (1). Явные выражения (1) и (2) соответствуют некоторой конкретной параметризации поля $\pi(x)$.

Известно, что при построении теории возмущений для нелинейных лагранжианов возникают серьезные трудности, связанные, в частности, с их неперенормируемостью. Однако, поскольку нелинейности в формулах (1) и (2) не взяты ad hoc, а имеют геометрическое происхождение, можно надеяться на «везение», приводящее к компенсации некоторых расходимостей. Для этого, конечно, указанное геометрическое происхождение должно быть явно использовано. В частности, при развитии схемы квантования следует как можно дольше работать в терминах, не зависящих от конкретной параметризации. Осуществлению такой программы и посвящена наша статья.

Наше основное предложение состоит в том, чтобы развивать теорию возмущений в терминах координатно-инвариантных величин типа токов L_{μ} . Континуальный интеграл, который является, по нашему мнению, наиболее компактной записью теоремы Вика, позволяет сформулировать правила Фейнмана. Связь инвариантных «токовых» функций Грина с матричными элементами S-матрицы устанавливается на основании известных соотношений типа теорем эквивалентности.

В разделе 1 мы подробно объясним геометрический смысл лагранжиана (1) и введем токовую величину L_{μ} . Каноническая схема квантования приведет к континуальному интегралу для функций перехода в разделе 2. Теория возмущений для вычисления этого интеграла и соответствующих функций Грина обсуждается в последнем разделе ¹).

1. НЕЛИНЕЙНОЕ ПОЛЕ $\Pi(x)$ И КИРАЛЬНО ИНВАРИАНТНЫЙ ЛАГРАНЖИАН

Мы покажем здесь, что нелинейность лагранжиана Вейнберга обусловлена тем, что входящее в него поле $\pi(x)$ само является в естественном смысле нелинейным. Материал этого раздела по частям известен, однако акценты в нем, возможно, являются новыми. Кроме того, мы введем здесь основные обозначения.

Классические поля, к которым мы привыкли, являются вектор-функциями $\psi(x)$ на пространстве-времени со значениями в линейном пространстве V. Выбору базиса e_1, \ldots, e_N в V соответствует задание поля $\psi(x)$ в виде набора компонент $\psi(x) = (\psi_1(x), \ldots, \psi_N(x))$, каждая из которых является обычной функцией от пространственно-временных переменных. Скалярное произведение в V позволяет написать лагранжиан — квадратичную форму ψ и первых производных $\partial_\mu \psi$.

Можно, однако, представить себе ситуацию, когда множество значений функции поля $\Pi(x)$ образует нелинейное многообразие M. Такое

¹⁾ Основные результаты этой работы были кратко изложены в докладе на II Международной конференции по нелокальным взаимодействиям (Азау, март 1970 г.).

поле естественно называть нелинейным. Выбору локальных переменных π_1, \ldots, π_m в многообразии M соответствует параметризация поля $\Pi(x)$ в виде набора компонент $\Pi(x) = \{\pi_1(x), \ldots, \pi_m(x)\}$. Набор производных $\partial_{\mu}\pi^1, \ldots, \partial_{\mu}\pi^m$ при фиксированных μ и x задает компоненты касательного вектора к M в точке $\pi(x)$. Действительно, при замене локальных переменных

$$\delta \pi^i = X^i(\pi) \tag{3}$$

имеем

$$\delta \partial_{\mu} \pi^{i} = \frac{\partial X^{i}}{\partial \pi^{k}} \partial_{\mu} \pi^{k}, \quad \frac{\partial \left(\partial_{\mu} \pi^{i}\right)}{\partial \pi^{k}} = \partial_{\mu} \frac{\partial \pi^{i}}{\partial \pi^{k}} = \partial_{\mu} \delta_{k}^{i} = 0, \tag{4}$$

откуда и следует наше утверждение. Риманова метрика $g_{ik}(\pi)$ на M позволяет ввести лагранжиан

$$\mathscr{L}_{0}(x) = \frac{\lambda^{-2}}{2} g_{ik}(\pi) \partial_{\mu} \pi^{i} \partial_{\mu} \pi^{k}, \qquad (5)$$

внутренним образом связанный с описанной геометрической картиной. Этот лагранжиан естественно обобщает квадратичный лагранжиан для набора линейных скалярных безмассовых полей. Естественного аналога массового члена в нелинейном случае нет.

Рассмотрим более подробно однородный случай, когда многообразие M является компактной группой Ли G. Для этого напомним в удобной для нас форме некоторые формулы дифференциальной геометрии на группе. На многообразии G естественно действует группа $G \times G$ посредством левых и правых сдвигов

$$\delta_L g = \delta \xi g, \quad \delta_R g = g \delta \eta,$$
 (6)

где g — точка на группе G, а $\delta\xi$ и $\delta\eta$ — бесконечно малые элементы из алгебры Ли A этой группы. На G существует единственная риманова метрика, инвариантная по отношению к этому действию. Для ее описания удобно ввести следующий объект

$$l = g^{-1} dg = \sum_{a,i} l_{ai} t^a d\pi^i$$
 (7)

— дифференциальную форму на G со значениями в A. Вторая запись соответствует выбору локальных координат π^i и базиса генераторов t^a в присоединенном представлении алгебры A.

Форма *l* инвариантна по отношению к девым сдвигам

$$\delta_{L}l = -g^{-1}\delta\xi dg + g^{-1}\delta\xi dg = 0$$
(8)

и просто преобразуется при правых сдвигах

$$\delta_{R}l = -\delta \eta g^{-1}dg + g^{-1}dg\delta \eta = [l, \delta \eta]. \tag{9}$$

Поэтому квадратичная форма дифференциалов

$$ds^2 = -\frac{1}{2} \operatorname{Tr} l^2 = \sum_a l_{ai} l_{aj} d\pi^i d\pi^j, \tag{10}$$

где Tr означает форму Киллинга (след в присоединенном представлении A), инвариантна по отношению как к левым, так и к правым сдвигам и определяет искомую риманову метрику.

В терминах формы l удобно описать и инвариантную риманову связность на G. Для этого заметим, что с ее помощью мы можем описывать векторные поля на G в терминах вектор-функций со значениями в алгебре Ли A. Для этого каждому такому полю X сопоставим значение на нем дифференциальной формы l, f = l(X). Смысл этого сопоставления состоит в том, что векторное поле $X = \sum X^i \frac{\partial}{\partial \pi^i}$ мы характеризуем не привычными компонентами X^i в натуральном репере $\partial / \partial \pi^i$, а локальными компонентами $f_a = \sum l_{ai}X^i$ в левоинвариантном репере $l_a = \sum l_{ai}d\pi^i$. Другими словами, мы относим векторное поле X к реперу, определяемому формой l.

В соответствии с (3), (9) функции f(g) преобразуются при левых и правых сдвигах следующим образом:

$$\delta_L f = 0, \quad \delta_R f = [f, \, \delta \eta], \tag{11}$$

где [,] означает операцию Ли в алгебре A. Риманова связность, т. е. ковариантная производная для векторных полей, в этих терминах выглядит следующим образом:

$$\nabla_{\mathbf{Y}} f = \mathbf{Y} f + \frac{1}{2} [l(\mathbf{Y}), f], \tag{12}$$

где Y — векторное поле, в направлении которого считается производная. Сравнивая эту формулу при $Y=\frac{\partial}{\partial \pi^{\,i}}$ с привычной записью ковариантной производной через символы Кристоффеля

$$\nabla_i X^k = \partial_i X^k + \sum_i \Gamma_{ii}^k X^i, \tag{13}$$

мы видим их тождественность, причем

$$\Gamma_{im}^{\ k} = \sum_{a} l^{ak} \partial_i l_{am} - \frac{1}{4} \sum_{abc} l^{ak} l_{bi} l_{cm} t_{abc}, \tag{14}$$

 t_{abc} — структурные константы нашей алгебры, определяющие операцию Ли в базисе t_a ,

$$[t_a, t_b] = t_{abc}t_c, \quad \operatorname{Tr}(t_a t_b) = -2\delta_{ab}, \tag{15}$$

а l^{ai} — матрицы, обратные к l_{ai} ,

$$\sum_{i} l_{ai} l^{ib} = \delta_a{}^b, \qquad \sum_{a} l^{ai} l_{ak} = \delta_k{}^i. \tag{16}$$

Известные соотношения между $g_{ik}=l_{ai}l_{ak}$ и $\Gamma_{ik}{}^{j}$ выполняются вследствие свойства

$$\partial_h l_{ai} - \partial_i l_{ah} = \frac{1}{2} \sum_{b \ c} t_{abc} l_{bh} l_{ic}, \tag{17}$$

которое следует из определения (7) и носит название уравнений Морера — Картана. На f(g) можно смотреть как на вектор-функцию со значениями в пространстве присоединенного представления группы G, причем правые сдвиги реализуют это представление. Аналогично можно рассмотреть на G вектор-функции ψ со значениями в линейном пространстве V некоторого унитарного представления T(g) группы G, отнесенные к реперу L. Последнее означает, что

$$\delta_L \psi = 0, \quad \delta_h \psi = T(\delta \eta) \psi.$$
 (18)

Ковариантная производная таких вектор-функций выглядит аналогично (12)

$$\nabla_{\mathbf{Y}}\psi = Y\psi + \frac{1}{2}T[l(Y)]\psi, \tag{19}$$

или в координатной записи

$$\nabla_i \psi = \frac{\partial \psi}{\partial \pi^i} + \frac{1}{2} l_{ai} T^a \psi, \qquad (20)$$

где T^a — представление генераторов t^a алгебры A, порожденное рассматриваемым представлением T.

Пусть $\Pi(x)$ — нелинейное поле со значениями в группе G. Рассмотрим также линейное поле $\psi(x)$, значения которого принадлежат линейному пространству унитарного представления T(g) группы G, и которое отнесено к левоинвариантному реперу. Киральная группа $G \times G$ действует на введенные поля следующим образом:

$$\delta_{L}\Pi(x) = \delta \xi \Pi(x), \quad \delta_{R}\Pi(x) = \Pi(x)\delta \eta, \quad \delta_{L}\psi(x) = 0,$$

$$\delta_{R}\psi(x) = T(\delta \eta)\psi(x). \tag{21}$$

Аналогом формы l является векторное поле

$$L_{\mu} = \Pi^{-1}(x) \, \partial_{\mu} \Pi(x), \qquad (22)$$

значения которого при каждом μ принадлежат алгебре A. В терминах этого поля мы запишем кирально инвариантный лагранжиан взаимодействия полей $\Pi(x)$ и $\psi(x)$.

Сравнение формул (5) и (10) показывает, что лагранжиан \mathcal{L}_0 можно записать в виде

$$\mathscr{L}_{0}(x) = -\frac{\lambda^{-2}}{4} Tr(L_{\mu}(x)L_{\mu}(x)), \qquad (23)$$

а ковариантная производная поля $\psi(x)$

$$\nabla_{\mu}\psi(x) = \partial_{\mu}\psi(x) + \frac{1}{2}T(L_{\mu})\psi(x)$$
 (24)

при преобразованиях (21) преобразуется так же, как и $\psi(x)$. Если лагранжиан $\mathcal{L}'(\partial_{\mu}\psi, \psi)$ свободных полей ψ инвариантен по отношению к действию группы $G: \psi \to T(g)\psi$, то лагранжиан

$$\mathscr{L} = \mathscr{L}_0 + \mathscr{L}'(\nabla_{\mu}\psi, \ \psi) \tag{25}$$

будет описывать кирально инвариантное взаимодействие классических полей Π и ψ . Мы видим, что этот лагранжиан полностью описывается в терминах векторного поля $L_{\mu}(x)$, введенного инвариантным образом.

Наше основное предложение состоит в том, чтобы схему квантования развивать также в терминах этой величины.

Здесь уместно обратить внимание на сходство последних формул с формулами модели токов Сугавара [6]. Это сходство не случайно, лагранжиан \mathcal{L}_0 действительно дает конкретную реализацию этой модели (см. [7]), причем L_{μ} играют роль сохраняющихся токов, соответствующих инвариантности относительно левых сдвигов.

Отметим также, что во всех формулах мы вместо левоинвариантных объектов $l,\ L_{\mu}$ можем использовать их правоинвариантные аналоги

$$r = dgg^{-1}, \quad R_{\mu} = \partial_{\mu}\Pi\Pi^{-1}. \tag{26}$$

В модели Сугавара ток R_{μ} тоже сохраняется, так что в этой теории имеются два сохраняющихся тока, каждый из которых можно использовать для описания динамики. Таким образом, G-инвариантная теория Сугавара на самом деле $G \times G$ -инвариантна.

Подчеркнем в заключение, что формулы преобразования полей $\psi(x)$ (21) не содержат полей $\pi(x)$, чем они отличаются от обычно используемых в литературе [1—4]. Это объясняется тем, что мы относим поля ψ к левоинвариантному реперу. Переход от некоторого репера к левоинвариантному соответствует замене $\psi \to U(\pi)\psi$, где U— зависящая от полей π унитарная матрица в пространстве представления T. Эту замену можно интерпретировать как новую параметризацию поля ψ . Можно показать, что формулы Вейнберга [1], Колемана и др. [3] или Волкова [4] действительно переходят в наши при надлежащей замене переменных.

Лагранжиан Вейнберга [1] соответствует группе G = SU(2). Многообразие этой группы трехмерно и может быть представлено в виде трехмерной сферы в четырехмерном евклидовом пространстве. Координаты на этом многообразии, приводящие к формулам Вейнберга, соответствуют стереографической проекции этой сферы на трехмерное евклидово пространство. Если задать сферу вектором φ и скаляром σ , так что

$$(\varphi, \varphi) + \sigma^2 = \lambda^{-2}, \tag{27}$$

TO

$$\pi = \frac{\varphi}{1 + \lambda^2 \sigma}.\tag{28}$$

С помощью этих формул нетрудно получить явные выражения для величин l, L_{μ} и других инвариантных объектов.

2. КАНОНИЧЕСКОЕ КВАНТОВАНИЕ. КОНТИНУАЛЬНЫЙ ИНТЕГРАЛ И S-МАТРИЦА

Для квантования мы будем использовать формализм континуального интеграла и начнем с его записи в канонической формулировке (см., например, обзор [8] и цитированную там литературу). Введем конкретные локальные координаты $\pi^1(x), \ldots, \pi^n(x)$ на M и построим канонические импульсы, сопряженные с полями $\pi^i(x)$,

$$p_i(x) = \frac{\partial \mathcal{L}}{\partial_0 \pi^i(x)} = g_{ij}(\pi) \, \partial_0 \pi^j(x) + F_i(\pi, \psi), \tag{29}$$

где F_i происходит из лагранжиана взаимодействия \mathscr{L}' и не содержит $\partial_0 \pi$, если для описания полей ψ использовать формализм Деффина — Кеммера, так как соответствующий лагранжиан линеен по производным. Формула (27) позволяет явно выразить $\partial_0 \pi^i$ в терминах $p_i(x)$ и построить соответствующее действие

$$S_{t'}^{t''} = \int_{t' \leq x_0 \leq t''} \left[p_i(x) \, \partial_0 \pi^i(x) + \Omega(\psi) - H(p_i, \pi^i, \psi) \right] dx, \tag{30}$$

где мы не выписывали явно каноническую форму $\Omega(\psi)$ для полей ψ , которая линейна по $\partial_0\pi$. Гамильтониан H является квадратичной формой импульсов p_i

$$H = g^{ij} [p_i(x) - F_i(x)] [p_j(x) - F_j(x)] + \tilde{H}(\psi, \pi), \tag{31}$$

где \widetilde{H} не зависит от p_i, g^{ij} — матрица, обратная к g_{ij} .

Амплитуда перехода $\langle Q''(x), \pi''(x), t''|Q'(x), \pi'(x), t' \rangle$ дается континуальным интегралом

$$\int \exp\left\{iS_{t'}^{t''}\right\} \prod_{x} dp_i(x) d\pi^i(x) d\psi(x), \qquad (32)$$

где мы не конкретизировали выбора канонических координат для полей ψ и выражения соответствующей канонической меры. Поля $\pi(x)$ и Q(x) при t=t' и t=t'' должны принимать заданные значения $\pi'(x)$, Q'(x) и $\pi''(x)$, Q''(x), соответственно.

Поскольку интеграл (32) по импульсам p_i гауссов, мы можем явно проинтегрировать по ним, после чего получим

$$\langle \alpha'' t'' | \alpha' t' \rangle = \int \exp \left\{ i \int_{t' \leqslant x_0 \leqslant t''} \mathcal{L}(\pi, \psi) \, dx \right\} \prod_{x, i} \sqrt{\gamma(x)} \, d\pi^i(x) \, d\psi(x), \quad (33)$$

где для краткости через α мы обозначили набор квантовых чисел Q(x), $\pi(x)$, и

$$\gamma(x) = \det \|g_{ij}(x)\| \tag{34}$$

является функционалом полей $\pi^i(x)$.

Проделанные выкладки имели целью показать, что в лагранжевой формулировке континуального интеграла для нашего случая следует в качестве меры интегрирования использовать $\sqrt{\gamma} \prod_i d\pi^i$ вместо привычного в линейных задачах выражения $\prod_i d\pi^i$. Множитель $\sqrt{\gamma}$ обязан своим появлением производным в неквадратичной части лагранжиана \mathcal{L}_0 . С точки зрения стандартной фейнмановской техники он приводит к появлению дополнительных диаграмм по сравнению с «наивным» ответом.

Заметим теперь, что $d\mu = \sqrt{\pi} \Pi d\pi^i$ имеет смысл инвариантной меры на группе G. Поскольку, кроме того, лагранжиан $\mathscr L$ зависит от полей π^i только через величины L_μ , континуальный интеграл для амплитуды перехода выражен полностью в терминах инвариантных объектов.

Амплитуда перехода не удобна для непосредственного вычисления матричных элементов *S*-матрицы. Обычно *S*-матрицу вычисляют при помощи функций Грина, производящий функционал для которых в на-

шем случае имеет вид

$$Z(\chi,\eta) = \int \exp\left\{i\int \left[\mathcal{L}(x) + \chi_i(x)\pi^i(x) + \eta(x)\psi(x)\right]dx\right\} \prod_{x,i} \sqrt{\gamma} d\pi^i d\psi$$
(35)

(использованы стандартные формулы приведения). К сожалению, этот функционал явно зависит от параметризации. Чтобы доказать инвариантность S-матрицы, используют [1—3] ссылки на теоремы эквивалентности [9—10]. Однако при конкретных подсчетах в теории возмущений из-за наличия расходимостей совсем не просто убедиться в эквивалентности различных параметризаций. Более того, некоторые авторы утверждают, что такая эквивалентность вообще отсутствует [11]. По нашему мнению, этот вывод ошибочен и основан на некорректном использовании теории возмущений. Ниже мы предложим явным образом инвариантный способ вычисления S-матрицы, при котором нам ни на каком этапе не придется пользоваться конкретной параметризацией.

Мы введем вместо зависящего от параметризации функционала (35) функционал

$$Z(\sigma_{\mu}, \eta) = \int \exp\left\{i \int \left[\mathcal{L}(x) + L_{\mu}{}^{a}\sigma_{\mu a} + \eta \psi\right] dx\right\} d\mu(\pi) d\psi, \qquad (36)$$

который, очевидно, не зависит от выбора параметризации. Инвариантные функции Грина выражаются через вариационные производные этого функционала по внешним источникам о_{ва} и η. Например,

$$\langle T[L_{\mu_{1}}^{a_{1}}(x_{1})...L_{\mu_{n}}^{a_{n}}(x_{n})]\rangle \equiv \Gamma_{\mu_{1}...\mu_{n}}^{a_{1}...a_{n}}(x_{1},...,x_{n}) = \frac{\delta^{n}Z}{\delta\sigma_{\mu_{1}}^{a_{1}}(x_{1})...\delta\sigma_{\mu_{n}}^{a_{n}}(x_{n})}\Big|_{\sigma=0}.$$
(37)

Мы выписали здесь явно лишь функции Грина для величин L_{μ} , так как линейные поля ψ рассматриваются обычным образом.

Покажем, каким образом по этим функциям Грина можно построить S-матрицу. В любой параметризации L_{μ} имеет вид

$$L_{\mu}^{a} = \partial_{\mu} \pi^{a} + O(\pi^{2}). \tag{38}$$

При подстановке этого выражения в формулу (37) и переходе на массовую поверхность полюсной вклад будут давать фактически лишь первые члены. Учет членов высшего порядка будет приводить лишь к мультипликативной перенормировке внешних линий (рассуждения подобного рода обычно используются при доказательстве теорем эквивалентности, см., например, [12]). Поэтому

$$Z_{h_i^2 \to 0}^{-n/2} k_1^2 \dots k_n^2 \Gamma_{\mu_1 \dots \mu_n}^{a_1 \dots a_n} (k_1, \dots, k_n) = k_{\mu_1} \dots k_{\mu_n} M(k_1, \dots, k_n), \qquad (39)$$

где $M\left(k_{\scriptscriptstyle 1},\ldots,\,k_{\scriptscriptstyle n}\right)$ — перенормированная амплитуда рассеяния, а

$$\delta^{ab}Z = \sum_{\mu,\nu} \Gamma_{\mu\nu}^{ab} \delta^{\mu\nu} \qquad (k^2 = 0). \tag{40}$$

3. ИНВАРИАНТНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ

Основным результатом нашей работы является построение для функционала (36) инвариантной теории возмущений. Вместо того чтобы вычислять функционал (36), пользуясь конкретной параметризацией полей $\pi(x)$ и разлагая L_{μ} в ряд по полям π , мы выразим вектор L_{μ} через егодивергенцию. Это можно сделать, так как компоненты L_{μ} не являются независимыми, а связаны соотношением

$$\partial_{\mathbf{u}} L_{\mathbf{v}} - \partial_{\mathbf{v}} L_{\mathbf{u}} = \lambda [L_{\mathbf{u}}, L_{\mathbf{v}}], \tag{41}$$

следующим из определения (22). Здесь и в последующих формулах мы пользуемся вместо безразмерных полей $\pi(x)$ размерными полями $\pi' = \lambda \pi$. Штрихи в дальнейшем опускаем. Дифференцируя (41) по x^{ν} , мы получим уравнения, позволяющие выразить L_{μ} через $\partial_{\nu}L_{\nu}$,

$$\Box L_{\mu} = \partial_{\mu}(\partial_{\nu}L_{\nu}) - \lambda \partial_{\nu}[L_{\mu}, L_{\nu}]. \tag{42}$$

Итерационное решение этого уравнения имеет вид

$$L_{\mu}(x) = \sum_{n=1}^{\infty} \lambda^{n-1} \int K_{\mu}^{n}(x, y_{1}, \dots, y_{n}) \, \partial_{\nu_{1}} L_{\nu_{1}} \dots \, \partial_{\nu_{n}} L_{\nu_{n}}(y_{n}) \, dy_{1} \dots dy_{n}, \quad (43)$$

где, например,

$$K_{\mu}^{1}(x, y) = \partial_{\mu}D^{c}(x - y). \tag{44}$$

Здесь и в дальнейшем $D^{c}(x)$ — причинная функция Грина оператора Даламбера. Выбор этой функции аргументируется, как обычно, возможностью перехода к евклидовой методике [13, 14]. Эти же соображения обеспечивают единственность решения (43) 2).

Интересующие нас функции Грина $\Gamma_{\mu_1,...,\;\mu_n}$ выражаются таким образом через скалярные функции:

$$G_{n}(x_{1},...,x_{n}) = \langle T \partial_{\mu_{1}} L_{\mu_{1}}(x_{1}) ... \partial_{\mu_{n}} L_{\mu_{n}}(x_{n}) \rangle, \tag{45}$$

$$\Gamma_{\mu_{1}...\mu_{n}}(x_{1},...,x_{n}) = \int \sum_{k_{1}=1}^{\infty} ... \sum_{k_{n}=1}^{\infty} \lambda^{\sum_{i} k_{i}-n} \times$$

$$\times K_{\mu_{1}}^{k_{1}}(x_{1}, y_{1},..., y_{k_{1}}) ... K_{\mu_{n}}^{k_{n}}(x_{n}, v_{1},...,v_{k_{n}}) G_{\sum_{i} k_{i}}(y_{1},...,v_{k_{n}}). \tag{46}$$

Функции $G_n(x_1,\ldots,x_n)$ удается вычислить, рассматривая в качестве возмущения лишь взаимодействие с другими полями и учитывая самодействие, т. е. член \mathcal{L}_0 , точно. Именно,

$$G_{n}(x_{1},...,x_{n}) = \int \partial_{\mu_{1}}L_{\mu_{1}}(x_{1})...\partial_{\mu_{n}}L_{\mu_{n}}(x_{n}) \sum_{n=0}^{\infty} \lambda^{n}B_{n}(\partial_{\nu}L_{\nu},\psi) \times$$

$$\times \exp\left\{i\int \left[-\frac{1}{4}\operatorname{Tr}L_{\mu}L_{\mu} + \mathcal{L}_{0}'(\psi)\right]dx\right\}d\mu(x)d\psi(x). \tag{47}$$

 $^{^{2)}}$ На самом деле значение S-матрицы на массовой поверхности не зависит от выбора функции Грина в (43), так как правила обхода полюсов в этой формуле не влияют на выражение L_{μ} через π . Однако при вычислении континуальных интегралов (47)—(49) необходимо использовать причинную функцию Грина.

Здесь мы выразили $\mathscr{L}'(\psi, L_{\mu})$ с помощью формулы (43) в терминах величин ψ , $\partial_{\nu}L_{\nu}$ и разложили его в ряд по λ . $B_{n}(\partial_{\nu}L_{\nu}, \psi)$ — функционалы от $\partial_{\nu}L_{\nu}$ и ψ , порожденные разложением \mathscr{L}' . В каждом члене этого ряда можно выполнить интеграцию по ψ и π . Интеграция по ψ проблемы не составляет в силу линейности этих полей.

Для вычисления интегралов типа

$$\int \partial_{\mu_i} L_{\mu_i}(x_1) \dots \partial_{\mu_n} L_{\mu_n}(x_n) \exp \left\{ i \int \left[-\frac{1}{4} \operatorname{Tr} L_{\mu} L_{\mu} \right] dx \right\} d\mu(x)$$
 (48)

мы введем инвариантный производящий функционал

$$W(v) = \int \exp\left\{i \int \left[-\frac{1}{4} \operatorname{Tr} L_{\mu} L_{\mu} - \frac{1}{2} \operatorname{Tr} L_{\mu} l_{\mu}\right] dx\right\} d\mu(x), \quad (49)$$

где внешний источник l_{μ} имеет ту же структуру, что и L_{μ} ,

$$l_{\mu} = \frac{1}{\lambda} \, \partial_{\mu} V^{-1} V. \tag{50}$$

Функционал (49) представляет собой, на первый взгляд, довольно сложный негауссов интеграл. Тем интереснее, что этот интеграл может быть точно вычислен, и ответ выглядит вполне тривиально:

$$W(v) = \exp\left\{i \int \left[\frac{1}{4} \operatorname{Tr} l_{\mu} l_{\mu}\right] dx\right\}. \tag{51}$$

Интеграл вычисляется с помощью группового сдвига

$$\Pi \to V\Pi$$
. (52)

Сделав в интеграле (49) замену переменных (52) и воспользовавшись инвариантностью меры интегрирования, мы получим (51).

Чтобы найти отсюда функции G_n , выразим l_μ и L_μ в формуле (51) с помощью (43) через $\partial_\nu l_\nu$ и $\partial_\nu L_\nu$ соответственно, и будем варьировать обе части этого равенства по $\partial_\nu l_\nu$. Приравнивая соответствующие коэффициентные функции и принимая во внимание, что

$$l_{\mu} = \int \partial_{\mu} D^{c}(x - y) \, \partial_{\nu} l_{\nu}(y) \, dy + O(\lambda), \tag{53}$$

получим

$$G_n^{a_1...a_n}(x_i,...,x_n) = \sum_i \prod_{ij} \Box \delta(x_i-x_j) \delta^{a_ia_j} + \lambda \Phi(G)$$

$$(G_n^{a_1\dots a_n}t^{a_1}\dots t^{a_n}=G_n). (54)$$

Сумма берется по всевозможным разбиениям аргументов на пары. Φ — некоторый функционал от G_n , явный вид которого определяется из формулы (51). Решая итерациями уравнения (54), нетрудно найти функции $G_n(x_1...x_n)$. В частности,

$$G_2^{ab}(x_1, x_2) = \delta^{ab} \square \delta(x_1 - x_2).$$
 (55)

Подставляя найденные функции G_n в формулы (46), (47), мы можем определить инвариантные функции Грина $\Gamma_{\mu_1,\ldots,\mu_n}$ и, следовательно, вычислить матричные элементы S-матрицы. При этом мы ни на каких этапах не пользовались конкретным выбором параметризации.

Таким образом, нам удалось построить теорию возмущений для нелинейных киральных лагранжианов полностью в инвариантных терминах. Следующая важная проблема, с которой мы сталкиваемся — это построение инвариантной процедуры устранения расходимостей. Чтобы построить такую процедуру, необходимо прежде всего ввести инвариантную регуляризацию. Конкретные предложения по этому поводу будут даны в работе одного из авторов (А. А. С.).

Математический институт им. В. А. Стеклова Академии наук СССР Поступила в редакцию 20 января 1971 г.

Литература

- [1] S. Weinberg. Phys. Rev. Let., 18, 188, 1967.
- [2] S. Gasiorowicz, D. A. Geffen. Rev. Mod. Phys., 41, 531, 1969.
- [3] S. Coleman, J. Wess, B. Zumino. Phys. Rev., 177, 2239, 1969.
- [4] Д. В. Волков. Препринт ИТФ 69—75, Киев, 1969.
- [5] G. Isham. Nuovo Cim., 59A, 356, 1969; S. K. Meetz. J. Math. Phys., 10, 589, 1969.
- [6] H. Sugawara. Phys. Rev., 170, 1659, 1968.
- [7] K. Bardacki, M. Halpern. Phys. Rev., 172, 1542, 1968.
- [8] G. Garrod. Rev. Mod. Phys., 38, 483, 1966.
- [9] J. Chisholm. Nucl. Phys., 26, 469, 1961.
- [10] S. Kamefuchi, L. O'Raifeartaigh, A. Salam. Nucl. Phys., 28, 529, 1961.
- [11] H. Sharap. Preprint University of Santa Barbara, 1970.
- [12] В. Н. Попов, Л. Д. Фаддеев. Препринт ИТФ, 67—36, Киев, 1967.
- [13] J. Shwinger. Phys. Rev., 115, 728, 1959.
- [14] Е. С. Фрадкин. Метод функций Грина в теории квантованных полей и в квантовой статистике, Труды ФИАН, т. 29, 1965.

INVARIANT PERTURBATION THEORY FOR NON-LINEAR CHIRAL LAGRANGIAN

A. A. Slavnov, L. D. Faddeev

The perturbation theory for non-linear chiral Lagrangians is constructed in terms of invariant quantities which do not depend upon parametrization.