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Abstract

A quantum generalization of Rogers’ five term, or “pentagon” dilogarithm identity
is suggested. It is shown that the classical limit gives usual Rogers’ identity. The case
where the quantum identity is realized in finite dimensional space is also considered and
the quantum dilogarithm is constructed as a function on Fermat curve, while the identity
itself is equivalent to the restricted star-triangle relation introduced by Bazhanov and
Baxter.
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1. Introduction

Recently, the dilogarithm function appeared in the study of the two dimensional quantum
conformal field theory (CFT)[1] and solvable lattice models both in two [2] and three
dimensions [3]. Particularly, the effective central charges of some rational CFT can be
expressed as finite sums of Rogers’ dilogarithm function with the arguments being solutions
for certain algebraic relations (e. g. thermodynamical Bethe anzats relations).

People use the dilogarithm function in two forms, L2(x) and L(x), introduced by
Euler and Rogers, respectively. Euler’s dilogarithm for any complex x can be defined by
the following integral:

L2(x) = −
∫ x

0

log(1 − z)

z
dz, (1.1)

while Rogers’ differs by the addition of an elementary function

L(x) = L2(x) + log(1 − x) log(x)/2. (1.2)

Among the various properties of these functions the most profound one is (probably) the
five term or “pentagon” identity for L(x), proved by Rogers [4]:

L(x) + L(y) − L(xy) = L(
x − xy

1 − xy
) + L(

y − xy

1 − xy
), (1.3a)

which in terms of Euler’s dilogarithm looks like

L2(x) + L2(y) − L2(xy) = L2(
x − xy

1 − xy
) + L2(

y − xy

1 − xy
) + log(

1 − x

1 − xy
) log(

1 − y

1 − xy
). (1.3b)

On the other hand, in the context of integrable lattice quantum field theory models
and quantum groups the problem of constructing of the Virasoro algebra on the lattice has
been suggested and partially solved [5], [6]. The following transcendental function plays
the significant role in the latter:

Ψ(x) =

∞
∏

n=1

(1 − xθn), |θ| < 1, (1.4)

where x is any complex variable and θ, a fixed complex parameter, lies within a unit
disk⋆. Considering θ as a quantization parameter, the function Ψ(x) can be interpreted as
a “quantum” Euler’s dilogarithm in the following sense. Let θ = exp(ǫ) for Re(ǫ) < 0 and
perform the limit ǫ → 0. Then, it is easy to see that

Ψ(x) =
1√

1 − x
exp(L2(x)/ǫ)(1 + O(ǫ)). (1.5)

⋆ In [6] this function has been defined using a slightly different argument and denoted
as S(x), with θ being q2 of [6]. In fact, the precise relation between the two definitions is
Ψ(x) = S(−θ1/2x).
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Motivated by relation (1.5) we address the following problem: What is the proper general-
ization of Rogers’ “pentagon” identity (1.3) in terms of Ψ(x)? The purpose of this paper
is to answer this question.

In Section 2 a quantized “pentagon” identity is suggested and it is shown that in the
classical limit it is reduced to (1.3). In Section 3 the case where θ is a root of unity is
considered. The quantum dilogarithm for such a θ is a function on Fermat curve, while
the classical limit of the “pentagon” identity again gives (1.3). In the summary the main
formulae are enumerated with a little discussion.

2. Quantized Rogers’ Identity

Let Û and V̂ be two operators, satisfying the Weil algebra:

Û V̂ = θV̂ Û . (2.1)

In [6] two relations were proved for function (1.4) with the operator arguments:

Ψ(Û)Ψ(V̂ ) = Ψ(Û + V̂ ), (2.2)

and

Ψ(V̂ )Ψ(Û) = Ψ(Û − Û V̂ + V̂ ). (2.3)

By applying (2.2) twice to the right hand side of (2.3), the latter can be rewritten as
follows:

Ψ(V̂ )Ψ(Û) = Ψ(Û)Ψ(−Û V̂ )Ψ(V̂ ). (2.4)

We shall argue that (2.4) is a quantum generalization of (1.3) we are looking for. Namely,
we shall show that (1.3) follows from (2.4) in the appropriate classical limit h̄ → 0. To do
it, we shall write (2.4) in terms of symbols of operators (see for example [7]).

One can realize operators Û , V̂ through a pair of coordinate and momentum Hermitian
operators, q̂ and p̂, satisfying the Heisenberg commutation relations:

[q̂, p̂] ≡ q̂p̂ − p̂q̂ = ih̄. (2.5)

Expressions for Û and V̂ have the forms:

Û = x exp(αq̂), V̂ = y exp(βp̂), (2.6)

where x and y are arbitrary complex variables, while complex parameters α and β are such
that:

θ = exp(iαβh̄). (2.7)

In Hilbert space, H, where operators q̂ and p̂ act, there are two basis sets, {|q〉} and {|p〉},
which diagonalize q̂ and p̂, respectively. We have the following scalar products:

〈q|q′〉 = δ(q − q′), 〈q|p〉 = exp(iqp/h̄), 〈p|p′〉 = 2πh̄δ(p − p′), (2.8)
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while the corresponding decompositions of the unity are

1 =

∫ +∞

−∞

|q〉dq〈q| =

∫ +∞

−∞

|p〉 dp

2πh̄
〈p|. (2.9)

The “q-p” symbol of any operator Â, acting in H, is defined as follows:

(Â)(q, p) =
〈q|Â|p〉
〈q|p〉 . (2.10)

The symbol of the product of two operators Â and B̂ is given by

(ÂB̂)(q, p) =

∫ +∞

−∞

∫ +∞

−∞

dq′dp′

2πh̄
exp(i(q − q′)(p′ − p)/h̄)(Â)(q, p′)(B̂)(q′, p). (2.11)

The symbols of the operators Ψ(Û), Ψ(V̂ ), and Ψ(−Û V̂ ), with Û and V̂ given by (2.6),
have the form

(Ψ(Û))(q, p) = Ψ(xq), (Ψ(V̂ ))(q, p) = Ψ(yp), (2.12a)

(Ψ(−Û V̂ ))(q, p) = 1/Ψ(xqyp), (2.12b)

where
xq = x exp(αq), yp = y exp(βp). (2.13)

Formula (2.12b) can be proven through the use of the following power series expansions
for Ψ(x) and 1/Ψ(x):

Ψ(x) =

∞
∑

n=0

θn(n+1)/2(−1)nxn/(θ)n, 1/Ψ(x) =

∞
∑

n=0

θnxn/(θ)n, (2.14)

where
(θ)0 = 1, (θ)n = (1 − θ)(1 − θ2) . . . (1 − θn), n ≥ 1. (2.15)

Now, we can calculate the symbols of both sides of the quantum identity (2.4), using (2.10)
– (2.12). The result has the form:

Ψ(xq)Ψ(yp)

Ψ(xqyp)
=

∫ +∞

−∞

∫ +∞

−∞

dq′dp′

2πh̄
exp(i(q − q′)(p′ − p)/h̄)Ψ(xq′)Ψ(yp′), (2.16)

where xq and yp are defined in (2.13). In the classical limit h̄ → 0 we can use (1.5) with

ǫ = iαβh̄ (2.17)

and apply the stationary phase method for evaluation of the integrals in (2.16). Then we
get in the leading order

exp(
1

ǫ
[L2(xq) + L2(yp) − L2(xqyp)])

= exp(
1

ǫ
[L2(

xq − xqyp

1 − xqyp
) + L2(

yp − xqyp

1 − xqyp
) + log(

1 − xq

1 − xqyp
) log(

1 − yp

1 − xqyp
)]),

(2.18)

which is (1.3b) in the exponentiated form.
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3. Quantum Dilogarithm at θN = 1

When |θ| = 1, definition (1.4) of the quantum dilogarithm needs qualification because the
infinite product is not convergent. In this section we restrict ourselves to a particular case,
θN = 1, for some integer, N ≥ 2, and properly modify the formulae of Section 2.

Let θ = ω, where ω is a primitive N -th root of unity. We choose ω together with its
square root ω1/2 as

ω = exp(2πi/N), ω1/2 = exp(πi/N). (3.1)

In this case, operators, satisfying algebra (2.1), can be realized as N -by-N matrices, since
their N -th powers are the central elements. Let us fix them equal to the minus identity
operator :

ÛN = −1, V̂ N = −1. (3.2a)

As a consequence of this choice we have also

(−Û V̂ )N = −1. (3.2b)

The spectrum of any operator, Â, whose N -th power is −1, is given by N distinct numbers

ωn−1/2, n = 0, 1, . . . , N − 1, (3.3)

so, all operators Û , V̂ , and −Û V̂ have one and the same spectrum (3.3). Index n in (3.3)
can be considered (mod N), i. e. as an element of ZN .

Before specification of the quantum dilogarithm, following [8], for complex variables
a, b, c, constrained by Fermat equation

aN + bN = cN , (3.4)

define the function

w(a, b, c|0) = 1, w(a, b, c|n) =

n
∏

j=1

b/(c − aωj), n ≥ 1, (3.5)

which depends on n only (mod N) due to relation (3.4):

w(a, b, c|n + N) = w(a, b, c|n). (3.6)

Quantum dilogarithm Ψ(Â), depending on an operator argument, Â with spectrum (3.3),
can be defined as an operator, commuting with Â, and with spectrum given by

Ψ(ωn−1/2) = Ψ(ω−1/2)w(a, b, c|n), (3.7)

where Ψ(ω−1/2) is a non-zero complex factor to be specified later. Using definition (3.7),
it is easy to derive the “functional” relation on Ψ(Â):

Ψ(ω−1Â)Ψ(Â)−1 = (c − ω1/2aÂ)/b, (3.8)
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which completely determines operator Ψ(Â) up to a complex factor. Now, we formulate
our statement.
Theorem. The following “quantum pentagon” identity holds:

Ψ(V̂ )Ψ′(Û) = Ψ′′(Û)Ψ′′′(−Û V̂ )Ψ′′′′(V̂ ), (3.9)

where Ψ# (# symbolizes any number of dashes from zero to four) are defined by (3.8) with
a#, b#, c# satisfying (3.4), and

yy′′ = y′y′′′′, y′ = y′′y′′′, x′′′ = xx′,

x′′ = x′y′′′′, x′′′′ = xy′′,
(3.10a)

for

x# = ω1/2a#/b#, y# = c#/b#. (3.10b)

To prove the theorem, note that the combination

Ψ′′(Û)−1Ψ(V̂ )Ψ′(Û)Ψ′′′′(V̂ )−1 (3.11)

commutes with operator −Û V̂ , provided relations (3.10) hold. Therefore (3.11) is some
function of −Û V̂ . It is a simple task to show that this function satisfies (3.8). So, relation
(3.9) holds up to some complex factor. The latter can be put to unity after the proper
choice of Ψ#(ω−1/2) in (3.7). In the case where detΨ#(Â) = 1, their N -th powers are

Ψ#(ω−1/2)N = (b#/c#)N(N+1)/2/H(a#/c#), (3.12)

where

H(x) = (1 − x)N
N−1
∏

j=1

(1 − xωj)j. (3.13)

In the basis, where operator Û is diagonal, one can show that relation (3.9) is nothing
else but the restricted star-triangle relation introduced by Bazhanov and Baxter [8] (see
formulae (1.19), (1.20) in their paper).

Let us comment on what is the “classical” limit of (3.9). Clearly, it should correspond
to N → ∞. Asymptotics (1.5) for the function (3.5) take the form:

w(a, b, c|m) =

√

1 − x

1 − xtm
exp(

1

ǫ
[L2(xtm) − L2(x)])(1 + O(ǫ)), (3.14a)

where

ǫ = 2πi/N, x = a/b, |a| < |b|, (3.14b)

and

tm = lim
N→∞

ωm, m → ∞, m/N = fixed. (3.14c)
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To define the “symbol” of a finite dimensional operator, in analogy with Section 2, con-
sider two basis sets {|n〉} and {|m〉}, n, m ∈ ZN , which diagonalize operators Û and V̂ ,
respectively:

〈n|Û |n′〉 = ωn−1/2δn,n′ , 〈n|V̂ |n′〉 = ω−1/2δn,n′+1, (3.15a)

〈m|V̂ |m′〉 = ωm−1/2δm,m′ , 〈m|Û |m′〉 = ω−1/2δm,m′−1. (3.15b)

The scalar products are given by

〈n|n′〉 = δn,n′ , 〈n|m〉 = ω−nm, 〈m|m′〉 = Nδm,m′ , (3.16)

while the decompositions of the unit operator are

1 =
∑

n∈ZN

|n〉〈n| =
1

N

∑

m∈ZN

|m〉〈m|. (3.17)

The “U-V” symbol of an operator, Â, is defined as a mixed matrix element

(Â)n,m =
〈n|Â|m〉
〈n|m〉 , (3.18)

the symbol of a product of Â and B̂ being

(ÂB̂)n,m =
1

N

∑

n′,m′∈ZN

ω−(n−n′)(m′−m)(Â)n,m′(B̂)n′,m. (3.19)

Calculating the symbol of (3.9), we will have a direct analog for (2.16) with a double
sum instead of integrals. To apply the stationary phase method, we have to convert these
summations into integrals. For this purpose, first let us write the following equality:

N−1
∑

m=0

1

z − ωm
=

N

z(1 − z−N )
(3.20)

for any complex z. Then, using Cauchy’s formula and (3.20), we have with exponential
accuracy

N−1
∑

m=0

f(ωm) ∼ N

2πi

∮

S1

f(z)
dz

z
, N → ∞ (3.21)

for any function f(z). Repeating calculations from Section 2, using (3.21), one can show
that (3.9) in the limit N → ∞ is reduced to (1.3b) as well.
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Summary

In this paper we have shown that the quantum identity (2.4) for the function (1.4) with
operator arguments satisfying (2.1) in the classical limit is reduced to Rogers’ dilogarithm
identity (1.3). We used the “q-p” symbols (2.10), (2.12) of the operators Û , V̂ , and −Û V̂
to convert (2.4) into the integral identity (2.16), as well as asymptotics (1.5), and the
stationary phase method to evaluate the integrals.

In Section 3 we proved another, finite dimensional counterpart of the quantized Rogers’
identity (3.9). The deformation parameter in this case is a root of unity θN = 1 for some
integer N ≥ 2. The quantum dilogarithm is a function on Fermat curve and is given
explicitly by (3.4), (3.5), (3.7), and (3.12). The classical limit of (3.9), corresponding to
N → ∞, also coincides with (1.3).

It is remarkable that the five term identity, which can be shown to be equivalent to
(3.9), but written in different terms, has been found already by Bazhanov and Baxter [8].
They used it as a local integrability condition for three dimensional statistical models. An
interesting question in connection with this is whether one can supply a three dimensional
interpretation for the quantum dilogarithm identity. In fact, the answer to this question
is affirmative, and it will be the subject of a subsequent publication.
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