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ON THE SPECTRAL THEORY OF ONE

FUNCTIONAL-DIFFERENCE OPERATOR FROM CONFORMAL

FIELD THEORY

LUDWIG D. FADDEEV AND LEON A. TAKHTAJAN

Abstract. In the paper we consider a functional-difference operator H =
U + U−1 + V , where U and V are self-adjoint Weyl operators satisfying
UV = q2V U with q = eπiτ and τ > 0. The operator H has applications
in the conformal field theory and in the representation theory of quantum
groups. Using modular quantum dilogarithm — a q-deformation of the Eu-
ler’s dilogarithm — we define the scattering solution and the Jost solutions,
derive an explicit formula for the resolvent of the self-adjoint operator H in
the Hilbert space L2(R), and prove the eigenfunction expansion theorem. The
latter is a q-deformation of the well-known Kontorovich-Lebedev transform in
the theory of special functions. We also present a formulation of the scattering
theory for the operator H.

1. Introduction

The quantum mechanics gave a powerful impetus for the development of the
spectral theory of differential operators. In particular, various spectral problems
for the Schrödinger operator were studied very extensively. Thus in classic papers
of I.M. Gelfand, M.G. Krein, B.M. Levitan, V.A. Marchenko and A.Ya. Povzner
in the 50s of the last century there have been studied direct and inverse scattering
problems for the Schrödinger operator (see surveys [1, 2] and references therein).
The fundamental role of these papers in the development of the classical integrable
systems is well-known.

Formulated in the 80s two-dimensional conformal field theory [3] has stimulated
further development of the representation theory of the infinite-dimensional Lie
groups and algebras. One of fundamental models of the conformal field theory is the
quantum Liouville model, whose discrete version was considered by us more than 30
years ago (see published in 1986 lecture [4]). Namely, in the explicit construction of
the L-operator in [4], the quantum group SLq(2,R) was first introduced. The matrix
trace of the L-operator — the functional-difference operator H — plays important
role in the quantization of the Teicmüller space [5, 6] and in the representation
theory of the non-compact quantum group SLq(2,R) [7]. In the notation of Section
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2.1 this operator has the form H = U + U−1 + V , and acts on functions ψ(x) on
the real line by the formula

(Hψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′) + e
πix
ω ψ(x).

Here ω are ω′ pure imaginary with positive imaginary parts, and the function ψ(x)
is assumed analytic in the strip | Im z| ≤ 2|ω′|, z = x+ iy (see Sections 2.1 and 4 for
precise definitions). The operator H is closely related to the representation theory
of the quantum group SLq(2,R) with q = eπiτ , where τ = ω′/ω > 0 (see[7, 8]).

The eigenvalue problem for the operator H has the form

ψ(x+ 2ω′, λ) + ψ(x− 2ω′, λ) + e
πix
ω ψ(x, λ) = λψ(x, λ), (1.1)

and is a functional-difference analog of the Schrödinger operator with the potential
that exponentially decays as x → −∞ and exponentially grows as x → ∞. Its
continuous limit is the equation

− ψ̃′′(x, λ) + e2xψ̃(x, λ) = λψ̃(x, λ) (1.2)

for the modified Bessel functions of the variable ex.
In [6] the eigenfunction expansion theorem for the operator H in the momentum

representation was formulated as formal completeness and orthogonality relations
in the distributional sense. The detailed derivation of these relations using the
properties of the modular quantum dilogarithm (see Section 2.2) was given in [8].
Nevertheless, the spectral theory of the operator H as unbounded self-adjoint op-
erator on the Hilbert space L2(R) has not been considered in the literature.

In the present paper we fill this gap and give a complete analytic study of the
functional-difference operator H . Namely, we define the scattering solution and the
Jost solutions for equation (1.1), present an explicit formula for the resolvent of the
self-adjoint operator H on L2(R), and prove the eigenfunction expansion theorem.
We also give a formulation of the scattering theory for the operator H .

Now let us discuss the content of the paper in more detail. In Section 2 we
collect all necessary concepts and notation. Specifically, in Section 2.1 we define a
Weyl pair U, V of unbounded self-adjoint operators on L2(R) satisfying the relation
UV = q2V U , and in Section 2.2 we present the properties of the modular quan-
tum dilogarithm γ(z), which is a q-deformation of the Euler’s dilogarithm and is
expressed through the ration of Alekseevski-Barnes double gamma functions.

In Section 3 we investigate the ‘free’ operator H0, formally given by the expres-
sion

(H0ψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′).

Thus in Section 3.1 we define H0 as unbounded self-adjoint operator on L2(R) with
the domain D(H0) and with the absolutely continuous spectrum of multiplicity
two filling [2,∞). In Section 3.2, using the Fourier transform, we give an explicit
expression for the resolvent R0(λ) of the operator H0 as the integral operator with
the integral kernel R0(x − y;λ), given by formula (3.5). Note that unlike the case
of the Schrödinger operator, where the resolvent kernel is given by the variation of
parameters method using a simple formula θ′(x) = δ(x), where θ(x) is the Heaviside
function, in the case of the functional-difference operator H0 the main equation for
the resolvent

R0(x+ 2ω′;λ) +R0(x− 2ω′;λ)− λR0(x;λ) = δ(x)



ON THE SPECTRAL THEORY OF ONE FUNCTIONAL-DIFFERENCE OPERATOR 3

holds due to the Sokhotski-Plemelj formula

1

2πi

(

1

x− i0
−

1

x+ i0

)

= δ(x)

from the theory of distributions.
In Section 4 we study the operator H . Namely, in Section 4.1, following Kashaev

[6] we consider the Fourier transform of equation (1.1), the functional-difference
equation of the first order (4.2) and its special solution ϕ̂(p, k). It is expressed
through the modular quantum dilogarithm, where it is convenient to use the paramet-
rization λ = 2 cosh

(

πik
ω

)

. In Section 4.2 we define a solution ϕ(x, k) of equation
(1.1) as the inverse Fourier transform of the solution ϕ̂(p, k). In Lemma 4.1 we
collect necessary properties of the solution ϕ(x, k), which show that it plays the
role of the scattering solution of equation (1.1). In particular, for real x and k the
solution ϕ(x, k) exponentially decays as x → ∞ and oscillates as x → −∞. More-
over, ϕ(x, k) is an entire function of the variable x and analytically continues to the
strip 0 < Im k ≤ |ω|, which corresponds to the values λ ∈ C \ [2,∞). In Section 4.3
we introduce the Jost solutions f±(x, k) of equation (1.1) as the solutions having
for real k the asymptotics

f±(x, k) = e±2πikx + o(1) as x→ −∞.

It should be noted that unlike differential equation (1.2), which has two linear
independent solutions, functional-difference equation (1.1) has infinite dimensional
space of solutions since one can multiply a solution by a quasi-constant — holo-
morphic 2ω′-periodic function of x. Therefore determining the Jost solutions is
rather nontrivial. Using the similarity with equation (1.2) (see Remarks 6 and 7),
we define the Jost solutions f±(x, k) by integral representation (4.18). Properties
of the Jost solutions f±(x, k) are given in Lemma 4.2. In particular, they admit
analytic continuation to the strip 0 < Im k ≤ |ω| and

ϕ(x, k) =M(k)f+(x, k) +M(−k)f−(x, k),

where the function M(k) is analytic in the strip 0 ≤ Im k ≤ |ω| and is given by
explicit formula through the modular quantum dilogarithm (see Lemma 4.1).

In Section 5.1, using analytic properties of the solutions ϕ(x, k) and f±(x, k),
we show that the resolvent Rλ(H) = (H − λI)−1 of the operator H is defined for
λ /∈ [2,∞) and is a bounded integral operator on L2(R) with the integral kernel
R(x, y;λ) given by explicit formula (5.1) (see Proposition 1). In Section 5.2 we
prove the eigenfunction expansion theorem for scattering solutions of the operator
H . Namely, computing the jump of the resolvent across the continuous spectrum,
we prove (see Theorem 1) that the operator

(U ψ)(k) =

∫ ∞

−∞

ψ(x)ϕ(x, k)dx

determines the isometric isomorphism of the Hilbert spaces L2(R) and H0 =
L2([0,∞), ρ(k)dk), where

ρ(k) =
1

M(k)M(−k)
= 4 sinh

(

πik

ω

)

sinh

(

πik

ω′

)

is the spectral function of the operator H . Here the operator U HU −1 is a multi-
plication by the function λ = 2 cosh

(

πik
ω

)

operator on the space H0, so that H has
simple absolutely continuous spectrum filling [2,∞).
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Comparison of equations (1.1) and (1.2) shows (see Remark 13) that the eigen-
function expansion for the operator H is a q-analog of the Kontorovich-Lebedev
transform, well-known in the theory of Bessel functions. In Section 5.3 we give a
formulation of the scattering theory for the operatorH and show that the scattering
operator is the operator of multiplication by the function

S(k) =
M(−k)

M(k)
.

2. Basic concepts and notations

Here we present necessary concepts and notation.

2.1. Weyl operators. Let L2(R) be a Hilbert space of functions, square integrable
over the real axis with respect to the Lebesgue measure. Weyl operators in quantum
mechanics are unitary on L2(R) operators U(u) and V (v) where u, v ∈ R, defined
by the formulas

(U(u)ψ)(x) = ψ(x− u), (V (v)ψ)(x) = e−ivxψ(x), ψ ∈ L2(R)

(see, e.g., [9, Ch. 2], where we put the Planck constant ~ = 1). The operators U(u)
and V (v) satisfy Hermann Weyl commutation relations

U(u)V (v) = eiuvV (v)U(u).

In the representation theory of the quantum group SLq(2,R) it is necessary to use
complex u and v so that the Weyl operators U(u) and V (v) become unbounded
self-adjoint operators on L2(R). Namely, using classic Weierstrass notation, denote
by 2ω, 2ω′ the generators of a lattice in C with the condition that Im τ > 0, where

τ =
ω′

ω
, and put q = eπiτ . In the representation theory of the quantum group

SLq(2,R) the key role is played by the operators U and V , formally defined by

(Uψ)(x) = ψ(x+ 2ω′), (V ψ)(x) = e
πix
ω ψ(x) (2.1)

and satisfying the relation
UV = q2V U (2.2)

on the common domain of U and V . Especially interesting is the representation
theory of the quantum group SLq(2,R) which corresponds to the cases q ∈ R and
|q| = 1. In the first case ω′ ∈ iR, ω ∈ R and 0 < q < 1, which corresponds to
the rectangular period lattice, whereas in the second case the half-periods ω, ω′ are
pure imaginary and theory of elliptic functions breaks down.

It is the latter case that arises in the application to the conformal field theory,
and here we consider the Weyl pair U, V with |q| = 1. This corresponds to the case
when the half-periods ω, ω′ are pure imaginary with positive imaginary parts. It is
convenient to use a normalization

ωω′ = −
1

4
, (2.3)

which is assumed to hold throughout the paper. In the literature on the quantum
Liouville theory, it is customary, following the work of A.B. and Al.B. Zamolod-
chikovs [10], to use a parametrization ω = i

2b , ω = ib
2 , where τ = b2 and b > 0.

The operators U and V defined by (2.1) are unbounded self-adjoint operators
on L2(R). This follows from the general spectral theorem of von Neumann, since
they are real-valued functions of the self-adjoint operators P and Q in quantum
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mechanics, U = e2iω
′P and V = e

πiQ

ω , where P = −i
d

dx
, and Q is the operator of

multiplication by the independent variable x.
The Weyl operators U and V can be also defined directly. Namely, U is a self-

adjoint operator in L2(R) with the domain

D(U) = {ψ(x) ∈ L2(R) : e−
πip
ω ψ̂(p) ∈ L2(R)},

where

ψ̂(p) = F (ψ)(p) =

∫ ∞

−∞

ψ(x)e−2πipxdx

is the Fourier transform1 in L2(R). Equivalently, the domain D(U) consists of
functions ψ(x) which admit analytic continuation into the strip {z = x + iy ∈ C :
0 < y < 2|ω′|} such that ψ(x + iy) ∈ L2(R) for all 0 ≤ y < 2|ω′| and the following
limit

ψ(x+ 2ω′ − i0) = lim
ε→0+

ψ(x + 2ω′ − iε)

exists in a sense of the convergence in L2(R). Here for ψ ∈ D(U) we have (Uψ)(x) =
ψ(x+2ω′−i0). The domain D(U−1) of the inverse operator U−1 is defined similarly
and (U−1ψ)(x) = ψ(x− 2ω′+ i0). The domain D(V ) of the self-adjoint operator V

consists of functions ψ(x) ∈ L2(R) such that e
iπx
ω ψ(x) ∈ L2(R). Therefore we have

U−1 = F
−1VF ,

where the inverse Fourier transform is given by

ψ(x) =

∫ ∞

−∞

ψ̂(p)e2πipxdp.

Remark 1. In the representation theory important role is played by the modular
double of the quantum group SLq(2,R), introduced in [11]. Its principal series
representations are realized in L2(R) and side by side with the operators U and V
use the dual Weyl operators Ǔ and V̌ . They satisfy dual to (2.2) relation

Ǔ V̌ = q̌2V̌ Ǔ , q̌ = eπi/τ

and are given by the formulas

(Ǔψ)(x) = ψ(x+ 2ω), (V̌ ψ)(x) = e
πix

ω′ ψ(x),

obtained from (2.1) by interchanging the half-periods ω and ω′.

2.2. Modular quantum dilogarithm. Put

γ(z) = exp

{

−
1

4

∫ ∞

−∞

eitz

sinωt sinω′t

dt

t

}

, (2.4)

where | Im z| < |ω| + |ω′| and contour of integration bypasses the singularity at
t = 0 from above. The function γ(z) plays a fundamental role in the definition of
the modular double of the quantum group SLq(2,R), given by the first author in
[11]. It was later given a name modular quantum dilogarithm. Here the adjective
“modular” reflects the invariance of the function γ(z) under the interchanged of ω
and ω′, i.e., under the change of τ by 1/τ . The term “quantum dilogarithm” in the

1We use the normalization of the Fourier transform adopted in the analytic number theory.
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name of γ(z) is related to its asymptotic as τ = b2 → 0, which for real z is easy to
get from the representation (2.4),

γ
(z

b

)

= exp

{

1

2πτ
Li2(−e

−2πz) +O(1)

}

τ → 0,

where

Li2(z) =

∞
∑

n=1

zn

n2

is the Euler’s dilogarithm.

Remark 2. The function γ(z) has interesting history. It appears in the number
theory under the name “double sine” [12, 13], in the theory of quantum integrable
systems of Calogero-Moser under the name “hyperbolic gamma function” [14], it
plays the role of S-matrix in the quantum nonlinear σ-model [15] and appears
in form-factors for the quantum Sine-Gordon model [16]. The function γ(z) is
expressed through the ratio of gamma-functions of the second order, introduced by
Barnes [17] in 1899 and actually investigated earlier in 1889 in V.P. Alekseevski’s
thesis [18].

We will be using the following properties of the modular quantum dilogarithm
(see [6, 19]).

QD1) The function γ(z) admits a meromorphic continuation to the whole complex
z plane with the poles at z = −(2m+1)ω−(2n+1)ω′ with integerm,n ≥ 0.
Here

γ(z − ω′′) =
c

z
+O(1), as z → 0,

where ω′′ = ω + ω′ and

c =
ei(

π
4
−β)

2π
, β =

π

12

(

τ +
1

τ

)

.

QD2) The function γ(z) satisfies the following difference equations

γ(z + ω) = (1 + e−
πiz

ω′ )γ(z − ω),

γ(z + ω′) = (1 + e−
πiz
ω )γ(z − ω′).

QD3) The reflection formula

γ(z)γ(−z) = eiβ+iπz2

,

so that γ(z) has zeros at z = (2m+1)ω+(2n+1)ω′ with integer m,n ≥ 0.
QD4) The reality property

γ(z) =
1

γ(z̄)
.

QD5) The function γ(z) has the following asymptotic

γ(z) = 1 + o(1)

as z → ∞ such that | arg z| < π
2 − δ, uniformly in z for each 0 < δ < π

2 .
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3. The operator H0

Here we consider the free operator H0 = U + U−1, which formally acts on
functions ψ(x) on the real line by the formula

(H0ψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′), (3.1)

where it is understood the the function ψ(x) is analytic in the stirp | Im z| ≤ 2|ω′|,
z = x+ iy. Obviously when 2ω′ = ib→ 0 the operator b−2(H0 − 2I) turns into the

operator −
d2

dx2
.

3.1. The domain. Formula (3.1) determines unbounded self-adjoint operator H0

on L2(R) with the domainD(H0), consisting of functions ψ(x) which admit analytic
continuation to the stirp {z = x + iy ∈ C : |y| < 2|ω′|} and such that ψ(x + iy) ∈
L2(R) for all |y| < 2|ω′| and following limits

ψ(x+2ω′− i0) = lim
ε→0+

ψ(x+2ω′− iε) and ψ(x−2ω′+ i0) = lim
ε→0+

ψ(x−2ω′+ iε)

exist in the sense of the convergence in L2(R). Here for ψ ∈ D(H0) formula (3.1)
is understood as (H0ψ)(x) = ψ(x+ 2ω′ − i0) + ψ(x− 2ω′ + i0).

In the ‘momentum representation’ the operator Ĥ0 = FH0F
−1 is the operator

of multiplication by the function 2 cosh(πipω ) and is naturally self-adjoint. Thus the
domain D(H0) of the operator H0 can be equivalently defined as

D(H0) =

{

ψ(x) ∈ L2(R) :

∫ ∞

−∞

cosh2
(

πip

ω

)

|ψ̂(p)|2dp <∞

}

and is a ‘hyperbolic analog’ of the Sobolev space W 2,2(R).

3.2. The resolvent of the operator H0. In the momentum representation the
operator

R0(λ) = (H0 − λ)−1

is a multiplication operator by the function (2 cosh(πipω )−λ)−1, and for λ ∈ C\[2,∞)

is a bounded operator on L2(R). Since the function 2 cosh(πipω ) is a 2-to-1 map of the
real axis −∞ < p < ∞ onto [2,∞), the spectrum of the operator H0 is absolutely
continuous and fills the semi-infinite interval [2,∞) with the multiplicity 2.

In the ‘coordinate representation’ the operator R0(λ) for λ ∈ C \ [2,∞) is an
integral operator on L2(R) with the kernel which depends on the difference,

(R0(λ)ψ)(x) =

∫ ∞

−∞

R0(x− y;λ)ψ(y)dy, (3.2)

where

R0(x;λ) =

∫ ∞

−∞

e2πipx

2 cosh(πipω )− λ
dp. (3.3)

In the what follows we will be using a convenient parametrization

λ = 2 cosh

(

πik

ω

)

, (3.4)

under which the resolvent set C \ [2,∞) turns into the ‘physical sheet’ — the strip
0 < Im k ≤ |ω|, and the continuous spectrum [2,∞) is twice covered by the real
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axis −∞ < k <∞. In parametrization (3.4) the integral in(3.3) is easily evaluated
by the residue theorem and we obtain

R0(x;λ) =
ω

sinh(πikω )

(

e−2πikx

1− e−4πiωx
+

e2πikx

1− e4πiωx

)

. (3.5)

Note that the function R0(x;λ) is regular at x = 0. From (3.5) we immediately
conclude that for 0 < Im k ≤ |ω| the following estimate holds

|R0(x;λ)| ≤ Ce−2π Im k|x|,

where C > 0 is a constant2, so that formulas (3.2) and (3.5) for λ /∈ [2,∞) do
determine a bounded operator on L2(R).

The eigenvalue equation

ψ(x+ 2ω′, k) + ψ(x− 2ω′, k) = 2 cosh

(

πik

ω

)

ψ(x, k) (3.6)

has solutions f−(x, k) = e−2πikx and f+(x, k) = e2πikx, which are analogs of the
Jost solutions in the theory of one-dimensional Schrödinger equation. In terms of
the Jost solutions formula (3.5) takes the form

R0(x− y;λ) =
2ω

C(f−, f+)(k)

(

f−(x, k)f+(y, k)

1− e
πi

ω′
(x−y)

+
f−(y, k)f+(x, k)

1− e−
πi

ω′
(x−y)

)

, (3.7)

where

C(f, g)(x, k) = f(x+ 2ω′, k)g(x, k)− f(x, k)g(x+ 2ω′, k)

is the so-called Casorati determinant (difference analog of the Wronskian) of solu-
tions of the functional-difference equation(3.6). It is 2ω′-periodic function of x and
for the Jost solutions C(f−, f+)(x, k) = 2 sinh(πikω ).

Remark 3. Using formula (3.7), one can check directly that the integral operator
(3.2) is the inverse of the operator H − λI for λ ∈ C \ [2,∞). Indeed, for a smooth
function g(x) with compact support it is easy to show that

ψ(x) =

∫ ∞

−∞

R0(x − y;λ)g(y)dy ∈ D(H0)

and (H0 − λI)ψ = g. The last statement reduces to the following equation

R0(x+2ω′ − y− i0;λ) +R0(x− 2ω′ − y+ i0;λ)− λR0(x− y;λ) = δ(x− y), (3.8)

understood in the distributional sense. Because the functions f±(x, k) satisfy equa-
tion (3.6), the distribution in the left hand side of (3.8) has support only at x = y,
and its singular part is the same as the singular part of the distribution

−
2ωω′

πiC(f−, f+)(k)

(

f−(x+ 2ω′, k)f+(y, k)− f−(y, k)f+(x+ 2ω′, k)

x− y − i0

+
f−(x− 2ω′, k)f+(y, k) + f−(y, k)f+(x+ 2ω′, k)

x− y + i0

)

in the neighborhood of x = y. The latter is

−
2ωω′

πi

(

1

x− y − i0
−

1

x− y + i0

)

= δ(x − y),

2Here and in what follows we denote different constants by C.
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where we have used the definition of the Casorati determinant, normalization (2.3)
and the Sokhotski-Plemelj formula.

Remark 4. It is instructive to compare formula (3.7) for the resolvent of the
operator H0 with that for the one-dimensional Schrödinger equation. The latter
formula is (see, e.g., [2, Ch.1, §1] and [9, Ch. 3])

G(x, y;λ) =
1

W (k)
(f−(x, k)f+(y, k)θ(y − x) + f−(y, k)f+(x, k)θ(x − y)), (3.9)

where λ = k2, f−(x, k) and f+(x, k) are, respectively, the Jost solutions and −∞
and ∞, and W (k) is their Wronskian. The key role in verifying the analog of
formula (3.8) plays the relation θ′(x) = δ(x), where θ(x) is the Heaviside function,
θ(x) = 1 when x > 0 and θ(x) = 0 when x < 0. Formula (3.7) has a remarkable
similarity with (3.9), where instead of θ(x) a smoothed analog of the Heaviside
function

θω′(x) =
1

1− e−
πix

ω′

is used. Here the analog of the formula θ′(x) = δ(x) is the formula

θω′(x+ 2ω′ − i0)− θω′(x+ 2ω′ + i0) = 2ω′δ(x),

which is equivalent to the Sokhotski-Plemelj formula.Heaviside

Remark 5. As noted by A.M. Polyakov, the function θω′(x), after the identification
of x with the energy ǫ, and πi

ω′
= 2π

b — with the inverse temperature 1
kT , coincides

with the one-particle partition function Z =
(

1− e−
ǫ

kT

)−1
in the Bose-Einstein

statistics.

4. The operator H

The operator H = H0 + V is given by the following formal functional-difference
formula

(Hψ)(x) = ψ(x+ 2ω′) + ψ(x− 2ω′) + e
πix
ω ψ(x),

defined on D(H0)∩D(V ). In particular, H is defined and symmetric on the dense
in L2(R) domain D ⊂ D(H0) ∩ D(V ), which consists of linear combination of the

functions p(x)e−x2+cx, where p(x) is a polynomial and c ∈ C. The domain D is
invariant for the operator H . Below we will show that the operator H is essentially
self-adjoint on the domain D and its unique self-adjoint extension, which we con-
tinue to denote by H , has a simple absolutely continuous spectrum filling [2,∞).
As in the case of the free operator H0, for the operator H we use parametrization
(3.4) and consider the following problem for the generalized eigenfunctions

ψ(x+ 2ω′, k) + ψ(x − 2ω′, k) + e
πix
ω ψ(x, k) = 2 cosh

(

πik

ω

)

ψ(x, k). (4.1)

4.1. The momentum representation and Kashaev’s wave function. In the
momentum representation the eigenfunction problem for the operator H is the
following first order functional-difference equation

ψ̂(p+ 2ω′, k) = 2

(

cosh

(

πik

ω

)

− cosh

(

πip

ω

))

ψ̂(p, k), p ∈ R, (4.2)
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where ψ̂ = F (ψ). Remarkably, the general solution of equation (4.2) (up to a mul-
tiplication by a quasi-constant!) is given explicitly through the modular quantum
dilogarithm

ψ̂(p, k) = c(k)e−πi(p−ω′′)2γ(p+ k − ω′′)γ(p− k − ω′′), 0 ≤ Im k ≤ |ω|, (4.3)

where the constant c(p, k) will be chosen just below. For real k the product of
γ-functions is singular at p = ±k and is understood as the distribution γ(p+ k −
ω′′ + i0)γ(p− k − ω′′ + i0).

The fundamental role of the generalized solution (4.3) of equation (4.2) was
revealed in the paper [6], and we call it Kashaev’s wave function. The distribution

ψ̂(p, k) has the following asymptotics

ψ̂(p, k) =

{

c(k)e−πi(p−ω′′)2(1 + o(1)) as p→ ∞,

c(k)eπi(p−ω′′)2+2iβ+2πik2

(1 + o(1)) as p→ −∞
(4.4)

and exponentially decays at large p,

|ψ̂(p, k)| = |c(k)| exp{−2π|p||ω′′|}(1 + o(1)) as |p| → ∞. (4.5)

Putting in (4.3)

c(k) = e−iβ−πik2

(4.6)

and denoting the corresponding solution by ϕ̂(x, k), we obtain important property

ϕ̂(p, k) = ϕ̂(−p,−k̄). (4.7)

Moreover, for real k we have ϕ̂(p,−k) = ϕ̂(p, k).

Remark 6. It is instructive to compare equation (4.2) with equation (1.2) in the
momentum representation, which has the form

ˆ̃ψ

(

p+
i

π
, k

)

= 4π2(k2 − p2) ˆ̃ψ(p, k), (4.8)

where we put λ = (2πk)2. Its solution is given by the product of the Euler gamma
functions

ˆ̃ψ(p, k) = 2−2πip−2Γ(πi(p+ k))Γ(πi(p− k)), (4.9)

and a general solution is obtained by multiplication by a quasi-constant — a pe-
riodic function with the period i/π. Performing the inverse Fourier transform and
putting s = −2πip, we get the Mellin-Barnes representation for the modified Bessel
function of the second kind

Kν(e
x) =

1

8πi

∫ σ+i∞

σ−i∞

(

ex

2

)−s

Γ

(

s− ν

2

)

Γ

(

s+ ν

2

)

ds, (4.10)

where ν = 2πik and σ = Re s > |Re ν| (see. [20, Ch. 7, formula (27)] for the Mellin
transform of the function Kν(z)). When Re ν = 0, the integration goes over the
imaginary axis σ = 0 bypassing the poles at s = ±ν in the half-plane Re s > 0.
The function Kν(e

x) is entire function of x.

Remark 7. Modified Bessel functions of the first kind Iν(e
x) and I−ν(e

x), where
λ = −ν2 (see Remark 6) are also solutions of equation (1.2). Here

W (I−ν , Iν)(x) = I−ν(x)I
′
ν(x) − I ′−ν(x)Iν(x) =

2 sinπν

π
.
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The function Iν(e
x) is obtained by multiplying solution (4.9) of equation (4.8) by

the quasi-constant
(e−πiν − e−πis)

πi
, where s = −2πip and by replacing the contour

of integration in (4.10) by the countour C on Fig. 1.

ν̇

−̇ν

C

<

>

Fig. 1

As the result we get an integral representation

Iν(e
x) = −

1

8π2

∫

C

(

ex

2

)−s

Γ

(

s− ν

2

)

Γ

(

s+ ν

2

)

(e−πiν − e−πis)ds. (4.11)

Shifting the contour of integration C to the left to −∞, we obtain the standard
representation of Iν(e

x) as the power series in variable ex. The factor e−πiν−e−πis

ensures that there are no poles at s = ν + 2 − 2n, n ∈ N. The function Iν(e
x) is

entire function of x and Iν(e
x+πi) = eπiνIν(e

x). From (4.10) and (4.11) we get

Kν(e
x) =

π

2 sinπν
(I−ν(e

x)− Iν(e
x)) , (4.12)

and also

Kν(e
x+πi) =

π

2 sinπν

(

e−πiνI−ν(e
x)− eπiνIν(e

x)
)

,

so that

Iν(e
x) =

1

πi

(

e−πiνKν(e
x)−Kν(e

x+πi)
)

. (4.13)

The function Iν(e
x) has the following asymptotic as x→ −∞,

Iik(e
x) =

2−ik

Γ(1 + ik)

(

eikx + o(1)
)

,

and grows as a double exponent as x→ ∞, whereas Kν(e
x) = O(e−ex) as x→ ∞.

4.2. The scattering solution. For real x and k put

ϕ(x, k) =

∫ ∞

−∞

ϕ̂(p, k)e2πipxdp, (4.14)

where ϕ̂(p, k) is given by formulas (4.3) and (4.6). Remark 6 shows that the function
ϕ(x, k) plays the role of q-deformed modified Bessel function Kik(e

x). It follows
from asymptotic (4.4) that the Kashaev’s wave function exponentially decays as
|Re p| → ∞ along the lines Im p = σ < |ω′′|, therefore

ϕ(x, k) =

∫ ∞+iσ

−∞+iσ

ϕ̂(p, k)e2πipxdp, (4.15)
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This formula determines the function ϕ(x, k) for real x and k in the physical strip
0 < Im k ≤ |ω|, |ω| < σ < |ω′′|.

Analytic properties of the function are φ(x, k) described in the following lemma.

Lemma 4.1. The following statements hold.

(i) For real x and k the function ϕ(x, k) has the following asymptotic

ϕ(x, k) =M(k)e2πikx +M(−k)e−2πikx + o(1) as x→ −∞,

where

M(k) = ei(β+
π
4
)−2πik(k−ω′′)γ(2k − ω′′).

Here M(k) =M(−k) and

1

|M(k)|2
= 4 sinh

(

πik

ω

)

sinh

(

πik

ω′

)

.

(ii) For real x the function ϕ(x, k) admits analytic continuation into the physical
strip 0 < Im k ≤ |ω| and satisfies the reality condition

ϕ(x, k) = ϕ(x,−k̄).

For real x and k the function ϕ(x, k) is a real-valued even function of k.
(iii) For fixed k in the physical strip the function ϕ(x, k) extends to an entire

function of the complex variable x and satisfies the equation

ϕ(x + 2ω′, k) + ϕ(x− 2ω′, k) + e
πix
ω ϕ(x, k) = 2 cosh

(

πik

ω

)

ϕ(x, k).

(iv) The following estimates hold:

|ϕ(x, k)| ≤ Ce−2πκx,

uniformly in −∞ < x ≤ a, where 0 ≤ κ = Im k ≤ |ω| and

|ϕ(x, k)| ≤ Ce−2π(|ω|+|ω′|)x, |ϕ(x ± 2ω′, k)| ≤ Ce2π(|ω
′|−|ω|)x,

uniformly in a ≤ x <∞.

Proof. Shifting for real x the contour of integration in formula (4.14) to the lower
half-plane and passing the poles of the integrand at p = ±k, we get the first formula
in (i). The formulas for the coefficientM(k) follow from the properties QD1)–QD4)
of the modular quantum dilogarithm. The statement (ii) directly follows from the
analytic properties of the modular quantum dilogarithm and property (4.7). In

particular, M(k) =M(−k̄).
To proof (iii), deform the contour of integration in the integral representation

(4.15) to the contour L by replacing the semi-infinite intervals −∞ < Re p ≤
−|Re k| − 1 and |Re k| + 1 ≤ Re p < ∞ on the line Im p = σ by the rays p =

−|Re k| − 1 + iσ + e
πi
4 t, where −∞ < t ≤ 0 and p = |Re k|+ 1+ iσ + e−

πi
4 t, where

0 ≤ t <∞ (on Fig. 2 the contour L is shown for real k).
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L
> >· ·

−k k

Fig. 2

Thus

ϕ(x, k) =

∫

L

ϕ̂(p, k)e2πipxdp, (4.16)

and it follows from the property QD5) of the function γ(z) that on the contour

L the integrand in (4.16) decays as e−πt2 when t → ±∞, so that formula (4.16)
determines ϕ(x, k) as entire function of the variable x. The difference equation for
ϕ(x, k) is obtained from (4.2) by the means of the Fourier transform. Finally, it is
standard to deduce the estimates (iv) from the integral representation (4.16) using
asymptotics QD5) of the function γ(z) and the steepest descent method. We leave
a detailed derivation to the reader. �

Remark 8. The function ϕ(x, k) is invariant under the interchange of ω and ω′

and satisfies the dual equation Ȟϕ = λ̌ϕ, where Ȟ = Ǔ + Ǔ−1 + V̌ (see Remark 1)
and λ̌ = 2 cosh

(

πik
ω′

)

.

4.3. The Jost solutions. When x→ −∞ equation (4.1) takes the free form (3.6)
and it is natural to assume that equation (4.1) has the Jost solutions — solutions
f±(x, k) with the following asymptotics

f±(x, k) = e±2πikx + o(1) as x→ −∞. (4.17)

Here we prove the existence of such solutions. The starting point for us is the
comparison of equation (4.1) with equation (1.2), where the role of the scattering
solution is played by the function ϕ̃(x, k) = Kik(e

x). Corresponding Jost solutions

are the functions f̃+(x, k) = 2ikΓ(1+ ik)Iik(e
x) and f̃−(x, k) = f̃(x,−k) having the

asymptotics
f̃±(x, k) = e±ikx + o(1) as x→ −∞.

Here
ϕ̃(x, k) = M̃(k)f̃+(x, k) + M̃(−k)f̃−(x,−k),

where

M̃(k) = −
π 2−1−ik

sin(πik)Γ(1 + ik)
= 2−1−ikΓ(−ik).

Using these arguments and Remark 6, consider the solution of equation (4.2),

obtained from ϕ̂(p, k) by multiplying by the quasi-constant sinh
(

πip
ω′

)

+ sinh
(

πik
ω′

)

,
and for real x and k put

f(x, k) =
1

2 sinh
(

πik
ω′

)

M(k)

∫

L

ϕ̂(p, k)

(

sinh

(

πip

ω′

)

+ sinh

(

πik

ω′

))

e2πipxdp.

(4.18)
The next statement shows that the functions f+(x, k) = f(x, k) and f−(x, k) =
f(x,−k) indeed play the role of the Jost solutions of equation (4.1).
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Lemma 4.2. The following statements hold.

(i) For real x and k the functions f±(x, k) have the following asymptotics as
x→ −∞

f±(x, k) = e±2πikx + o(1).

(ii) For real x the functions f±(x, k) admit analytic continuation into the phys-
ical strip 0 < Im k ≤ |ω| and satisfy

f±(x, k) = f±(x,−k̄).

(iii) For fixed k in the physical strip the functions f±(x, k) are entire functions
of the variable x and satisfy equation(4.1). Asymptotics in part (i) remain
valid in the strip 0 ≤ Imx ≤ 2|ω′| as well.

(iv) The following relation holds

ϕ(x, k) =M(k)f+(x, k) +M(−k)f−(x, k).

(v) The following estimates hold

|f±(x, k)| ≤ Ce∓2πκx,

uniformly on −∞ < x ≤ a, where 0 ≤ κ = Im k ≤ |ω| and

|f±(x, k)| ≤ Ce2π(|ω|−|ω′|)x, |f±(x+ 2ω′, k)| ≤ Ce2π(|ω|+|ω′|)x,

uniformly on a ≤ x <∞.

Proof. To proof (i) it is sufficient to shift the contour of integration in (4.18) for
negative x to the lowe half-plane and to use regularity of the integrand at p = −k
(due to the multiplication by the quasi-constant sinh

(

πip
ω′

)

+ sinh
(

πik
ω′

)

). Parts
(ii)–(iv) immediately follow from representation (4.18), rewritten in the form

f(x, k) =
1

4 sinh
(

πik
ω′

)

M(k)

(

ϕ(x − 2ω, k)− ϕ(x + 2ω, k) + 2 sinh
(

πik
ω′

)

ϕ(x, k)
)

,

(4.19)
and similar properties of the function ϕ(x, k) in Lemma 4.1. Since the ‘potential’

e
πix
ω in equation (4.1) has period 2ω, the functions ϕ(x ± 2ω, k) also satisfy (4.1).

The proof of the estimates (v) goes in a standard way using integral representation
(4.18). �

Remark 9. Formula (4.19) is a difference analog of (4.13). The function f(x, k) is
not invariant under the interchange of ω and ω′, and therefor does not satisfy the
duel eigenvalue problem(cf. Remark 8).

Remark 10. In the case when Im τ > 0, the Jost solutions f±(x, k) can be defined

using power series in the variable e
πix
ω , which are absolutely convergent for all

x ∈ R. In our case τ = b2 > 0 and the problem of small denominators emerges, so
that the corresponding series are no longer convergent for all x. This is why we are
using integral representation (4.18).

4.4. The Casorati determinant. As in Section 3.2 it is checked directly that the
Casorati determinant

C(f, g)(x, k) = f(x+ 2ω′, k)g(x, k)− f(x, k)g(x+ 2ω′, k)

of two solutions of equation (4.1) is a 2ω′-periodic function of the variable x. Unlike
its continuous analog, the Wronskian, the Casorati determinant, generally speaking,
is no longer a constant. Nevertheless, the following statement holds.
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Lemma 4.3. We have the formula

C(f−, f+)(x, k) = 2 sinh

(

πik

ω

)

.

Proof. Put C(x) = C(f−, f+)(x, k). As x → −∞, it follows from (i) and (iii) in
Lemma 4.2 that in the strip 0 ≤ Imx ≤ 2|ω′| the following asymptotic holds

C(x) = 2 sinh

(

πik

ω

)

+ o(1).

When x→ ∞, using

C(x) = 2 sinh

(

πik

ω′

)

C(f−, ϕ)(x, k)

and the estimates in parts (iv) of Lemma 4.1 and (v) of Lemma 4.2, we obtain that
on the lines Imx = 0 and Imx = 2|ω′| the function C(x) is bounded. Further, it
follows from integral representation (4.18) that the function C(x) has no more than
exponential growth as x→ ∞. Using Phragmén-Lindelöf theorem, we conclude that
2ω′-periodic function C(x) is bounded in the strip 0 ≤ Imx ≤ 2|ω′|. Therefore,
C(x) = 2 sinh

(

πik
ω

)

. �

5. The eigenfuncion expansion theorem

5.1. The resolvent of the operator H. Consider the integral operator R(λ) on
L2(R) with the integral kernel

R(x, y;λ) =
ω

sinh
(

πik
ω

)

M(k)

(

f−(x, k)ϕ(y, k)

1− e
πi

ω′
(x−y)

+
f−(y, k)ϕ(x, k)

1− e−
πi

ω′
(x−y)

)

, (5.1)

so that
R(y, x;λ) = R(x, y;λ) and R(x, y;λ) = R(x, y; λ̄).

The following statement holds.

Proposition 1. The operator R(λ) for λ ∈ C\[2,∞) is the resolvent of the operator
H. In other words, R(λ) = (H − λI)−1.

Proof. As in the case of the operator H0 (see Remark 3), the statement that for
smooth function g(x) with compact support the function

ψ(x) =

∫ ∞

−∞

R(x, y;λ)g(y)dy ∈ D(H)

and satisfies equation (H − λI)ψ = g, reduces to the verification of the following
equation

R(x+2ω′− i0, y;λ)+R(x− 2ω′+ i0, y;λ)+ (e
πix
ω −λ)R(x, y;λ) = δ(x− y), (5.2)

understood in the distributional sense. As in Remark 3, the functions ϕ(x, k) and
f−(x, k) satisfy equation (4.1), so that the distribution in the left hand side of
equation (5.2) has support only at x = y, and its singular part coincides with the
singular part of the function

−
ωω′

π sinh
(

πik
ω

)

M(k)

(

f−(x+ 2ω′, k)ϕ(y, k)− f−(y, k)ϕ(x+ 2ω′, k)

x− y − i0

+
f−(x− 2ω′, k)ϕ(y, k) + f−(y, k)ϕ(x + 2ω′, k)

x− y + i0

)
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in the neighborhood of x = y. As in the derivation in Remark 3, equation (5.2)
follows from the formula

C(f−, ϕ)(x, k) = 2 sinh

(

πik

ω

)

M(k),

which, in turn, follows from Lemma 4.3, and from the Sokhotski-Plemelj formula.
It remains to show that the kernel (5.1) when λ ∈ C \ [2,∞) defines a bounded

operator on L2(R). This immediately follows from the estimate

|R(x, y;λ)| ≤ Ce−2πκ|x−y|, κ = Im k,

which is a consequence of the estimates in Lemmas 4.1 and 4.2. Indeed, since
R(x, y;λ) = R(y, x;λ), it is sufficient to assume that y ≤ x. Let us rewrite (5.1) in
the form

R(x, y;λ) =
ω
(

f−(x, k)ϕ(y, k)e
2πiω(x−y) − f−(y, k)ϕ(x, k)e

−2πiω(x−y)
)

2 sinh 2πiω(x− y) sinh
(

πik
ω

)

M(k)

and consider first the case 0 ≤ y ≤ x. Using the estimates from part (iv) of Lemma
4.1 and part (v) of Lemma 4.2, we get

|R(x, y;λ)| ≤ Ce−2π|ω|(x−y)
(

e2π(|ω|−|ω′|)xe−2π(|ω|+|ω′|)ye−2π|ω|(x−y)+

+e−2π(|ω|+|ω′|)xe−2πκye2π|ω|(x−y)
)

≤ 2Ce−2π|ω|(x−y).

For the case y < 0 ≤ x we have

|R(x, y;λ)| ≤ Ce−2π|ω|(x−y)
(

e2π(|ω|−|ω′|)xe−2πκye−2π|ω|(x−y)+

+e−2π(|ω|+|ω′|)xe2πκye2π|ω|(x−y)
)

≤ C
(

e2π(|ω|−κ)ye−2π|ω|(x−y) + e−2π|ω|xe2πκy
)

≤ 2Ce−2πκ(x−y).

And, finally, in the remaining case y ≤ x < 0 we have the estimate

|R(x, y;λ)| ≤ Ce−2π|ω|(x−y)
(

e2πκxe−2πκye−2π|ω|(x−y)+

+e−2πκxe2πκye2π|ω|(x−y)
)

≤ 2Ce−2πκ(x−y). �

Remark 11. Formula (5.1) can be also used as a definition of the operator H .

5.2. The eigenfunction expansion. Explicit formula (5.1) for the resolventR(λ)
immediately leads to the eigenfunction expansion theorem for the operator H .
Namely, denote by E(∆), where ∆ is a Borel subset of R, the resulution of the
identity for the self-adjoint operator H (see [21, 22]). When there is no point
spectrum we have the formula

E(∆) = lim
ε→0+

1

2πi

∫

∆

(R(λ+ iε)−R(λ− iε)) dλ

(see [22, Ch. XII]), sometimes called the Stone’s formula. In particular, putting
∆ = [2,∞), for the operator H we get

I = lim
ε→0+

1

2πi

∫ ∞

2

(R(λ+ iε)−R(λ− iε))dλ. (5.3)

It is this formula that serves as a base for the derivation of the eigenfunction
expansion theorem.
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Theorem 1. The following statements hold.

(i) The operator U , given by the formula

(U ψ)(k) =

∫ ∞

−∞

ψ(x)ϕ(x, k)dx,

isometrically maps L2(R) onto the Hilbert space H0 = L2([0,∞), ρ(k)dk)
with the spectral function

ρ(k) =
1

|M(k)|2
= 4 sinh

(

πik

ω

)

sinh

(

πik

ω′

)

.

In other words, U : L2(R) → H0 and wherein

U
∗
U = I and U U

∗ = I0,

where I0 is the identity operator on H0.
(ii) The operator U HU −1 is a multiplication by the function 2 cosh

(

πik
ω

)

op-
erator on H0, so that the operator H has simple absolutely continuous
spectrum filling [2,∞).

Proof. We will show that for each ψ(x) ∈ D the following identity holds

ψ(x) =

∫ ∞

0

(
∫ ∞

−∞

ψ(y)ϕ(y, k)dy

)

ϕ(x, k)ρ(k)dk. (5.4)

Using equation (4.1) for ϕ(x, k) we get that (U ψ)(k) as k → ∞ decays faster

than any power of e−
πik
ω , so that all integrals are obviously absolutely convergent.

Formula (5.4) can be proved by the method of complex integration as in [1, §2]
(see also [9, Ch. 3]), as well as by applying formula (5.3), which is what we will
using here. Namely, apply (5.3) to the function ψ(x) ∈ D . Explicitly computing
the jump of the resolvent kernel R(x, y;λ) across the continuous spectrum using
relation (iv) of Lemma (4.2), we have

R(x, y;λ+ i0)−R(x, y;λ− i0) =
ω

sinh
(

πik
ω

)

ϕ(x, k)ϕ(y, k)

|M(k)|2

=
ω

sinh
(

πik
ω

)ϕ(x, k)ϕ(y, k)ρ(k),

where it was used that the case λ + i0 corresponds to the variable k > 0, and the
case λ− i0 — to the variable −k. Using dλ = 2πi

ω sinh
(

πik
ω

)

dk, we arrive at (5.4),

and by multiplying it by ψ(x) and integrating, we obtain

‖ψ‖2L2(R) = ‖U ψ‖2H0
.

(the change of order of integration is legitimate because of the Fubini theorem).
Thus the operator U , defined on a dense linear subset D ⊂ L2(R), maps it into the
Hilbert space H0 and is an isometry. Therefore U admits an isometric extension
to the whole L2(R), which proves the completeness relation

U
∗
U = I.

The orthogonality relation

U U
∗ = I0

is equivalent to the statement that the image of the operator U in H0, the closed
subspace ImU , coincides with H0. This is proved in the standard way (see e.g.,
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[9, Ch. 3]). Namely, on the domain D we have U (H − λI) = (Ĥ − λI)U , where

Ĥ is the multiplication by 2 cosh(πikω ) operator on H0. From here we get

U R(λ) = R̂(λ)U ,

where R̂(λ) is the resolvent of the operator Ĥ . Thus ImU is an invariant subspace

for the operator R̂(λ) for all λ ∈ C \ [2,∞). Therefore, R̂(λ) commutes with the
orthogonal projection operator P onto the subspace ImU . Hence P is a function
of the operator Ĥ which, in turn, is the function of of the multiplication operator
by the variable k on H0. Thus we obtain that P is a multiplication operator by a
characteristic function χ∆ of some Borel subset ∆ in [0,∞). On the other hand, if
for some k > 0

∫ ∞

−∞

ψ(x)ϕ(x, k)dx = 0

for all ψ(x) ∈ C0(R), then ϕ(x, k) = 0 for all x, so that necessarily ∆ = [0,∞).
This completes the proof of (i). The part (ii) follows from the above arguments.

�

Remark 12. In the physics literature the completeness and orthogonality relations,
understood in the distributional sense, are written as follows

∫ ∞

0

ϕ(x, k)ϕ(y, k)ρ(k)dk = δ(x− y)

and
∫ ∞

−∞

ϕ(x, k)ϕ(x, l)dx =
1

ρ(k)
δ(k − l), k, l > 0.

As in the case of one dimensional Schrödinger equation (see e.g., [9, Ch. 3]), the
last relation can be proved directly by using the Casorati determinant Namely, put
C(x) = C(ϕ(x, k), ϕ(x, l)) and integrate this function over the contour D on Fig.
3.

D
−N

>

<

∧ ∨

N

−N − 2ω′ N − 2ω′

Fig. 3

By Cauchy theorem,
∫

D

C(x)dx = 0.

On the other hand, using the formula

C(x) − C(x− 2ω′) = (λ− µ)ϕ(x, k)ϕ(x, l),

where λ = 2 cosh
(

πik
ω

)

and µ = 2 cosh
(

πil
ω

)

, we get the equation

∫ N

−N

ϕ(x, k)ϕ(x, l)dx =
1

(λ− µ)

(

∫ N

N−2ω′

C(x)dx −

∫ −N

−N−2ω′

C(x)dx

)

.
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It follows form the estimates (iv) in Lemma 4.1 that the first integral is exponentially
decaying as N → ∞. Using (i) and (iv) in Lemma 4.2, well-known formula from
the distribution theory

lim
N→∞

sin 2π(k − l)N

k − l
= πδ(k − l),

and the Riemann-Lebesgue lemma, we obtain

lim
N→∞

1

(µ− λ)

∫ −N

−N−2ω′

C(x)dx =
1

ρ(k)
δ(k − l).

Remark 13. Because W (Jν ,Kν) = −1 (see Remark 7), the resolvent kernel R̃(λ)

of the operator H̃ = −
d2

dx2
+ e2x has the form

R̃(x, y;λ) =
1

2ikM̃(k)
(f̃−(x, k)ϕ̃(y, k)θ(y − x) + f̃−(y, k)ϕ̃(x, k)θ(x − y)),

where Im k > 0 (see Remark 4). As in Theorem 1, we get that the operator Ũ ,
given by the formula

(Ũ ψ)(k) =

∫ ∞

−∞

ψ(x)ϕ̃(x, k)dx,

isometrically maps L2(R) onto H̃0 = L2([0,∞), ρ̃(k)dk), where

ρ̃(k) =
2π

|M̃(k)|2
=

2k sinhπk

π2
.

Here the operator Ũ H̃Ũ −1 is a multiplication operator by k2 on H̃0. The formulas

ψ̃(k) =

∫ ∞

−∞

ψ(x)Kik(e
x)dx

and

ψ(x) =
2

π2

∫ ∞

0

ψ̃(k)Kik(e
x)k sinhπkdk,

after the change of variable x = ln y, are known in the theory of special functions as
Kontorovich-Lebedev transform and its inverse (see [23, Ch. XII]), and the equality

∫ ∞

−∞

|ψ(x)|2dx =
2

π2

∫ ∞

0

|ψ̃(k)|2k sinhπkdk

— as the Parseval theorem. The eigenfunction expansion theorem for the operator
H̃ gives a spectral interpretation of the Kontorovich-Lebedev transform, so that
Theorem 1 may be considered as a q-analog of this transformation.

5.3. The scattering theory. Here we briefly outline the scattering theory for the
operator H . Put

ϕ(+)(x, k) =
1

M(k)
ϕ(x, k).

We have as x→ −∞,

ϕ(+)(x, k) = e2πikx + S(k)e−2πikx + o(1),

where

S(k) =
M(−k)

M(k)
= e−4πiω′′k γ(−2k − ω′′)

γ(2k − ω′′)
.
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According to the stationary scattering theory (see [1, 2]), multiplication by the
function S(k) operator plays the role of the scattering operator on the space H0 as
well as on L2([0,∞)). Note that the operator U (+), defined as

(U (+)ψ)(k) =

∫ ∞

−∞

ψ(x)ϕ(+)(x, k)dx,

isometrically maps L2(R) onto L2([0,∞)). As in [8, 24], it is convenient to interpret
the latter space as a subspace in L2(R) of functions χ(k) satisfying

χ(k) = S(k)χ(−k).

The operator U (−) is defined similarly by using the solution ϕ(−)(x, k) = ϕ(+)(x, k).
The operators U (±) are used for the non stationary approach to the scattering
theory (see [1, 2]), and we leave its formulation to the reader.

Remark 14. In a similar way one formulates the scattering theory for the operator
H̃. Here for the scattering operator S̃ we have

S̃(k) =
M̃(−k)

M̃(k)
= −22ik

Γ(1 + ik)

Γ(1− ik)

(cf. formula (5.19) in [10]).
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