EVALUATION OF AN INFINITE PRODUCT OF SPECIAL MATRICES

L. D. FADDEEV, N. YU. RESHETIHIN

An important role in studying the integrable models of Field Theory is played by matrix-functions of complex variable of a special form [1]. The simplest example is provided by a rational matrix:

$$(1) L_0(z) = \frac{z+B}{z+\mu},$$

where B is a matrix of size $n \times n$ and μ is a complex number. It is natural to call it the matrix Weierstrass factor for the complex plane \mathbb{C} (i.e., a meromorphic function on \mathbb{C} with one pole and such that $L(\infty) = 1$).

The next interesting example is given by a matrix Weierstrass factor for a strip. This function L_1 is meromorphic in the strip $\{z \in \mathbb{C} : 0 < \operatorname{Re} z \leq 1\}$ has only one pole in it and is regular at infinity, i.e.,

$$L_1(z) \to \mathcal{D}_{\pm}$$
, Im $z \to \pm \infty$,

where \mathcal{D}_{\pm} are non-degenerate diagonal matrices. The boundary values of $L_1(z)$ satisfy the following relation:

(2)
$$L_1(i\lambda + 1) = AL_1(i\lambda)A^{-1}, \quad \lambda \in \mathbb{R},$$

matrix Weierstrass factor for the complex plane \mathbb{C} (i.e., a meromorphic function on \mathbb{C} with one pole and such that $L(\infty) = 1$).

The next interesting example is given by a matrix Weierstrass factor for a strip. This function L_1 is meromorphic in the strip $\{z \in \mathbb{C} : 0 < \operatorname{Re} z \leq 1\}$ has only one pole in it and is regular at infinity, i.e.,

$$L_1(z) \to \mathcal{D}_{\pm}, \quad \text{Im } z \to \pm \infty,$$

where \mathcal{D}_{\pm} are non-degenerate diagonal matrices. The boundary values of $L_1(z)$ satisfy the following relation:

(2)
$$L_1(i\lambda + 1) = AL_1(i\lambda)A^{-1}, \quad \lambda \in \mathbb{R},$$

where $A = \operatorname{diag}(1, \varepsilon, \dots, \varepsilon^{n-1}), \varepsilon = \exp\left(\frac{2\pi i}{n}\right)$. One can represent such a matrix-function as an infinite product of functions (1). For this purpose introduce the family of matrices

(3)
$$L^{m}(z) = A^{m}L_{0}(z + m)A^{-m}$$

and their finite product

(4)
$$L_1^N(z) = L^N(z)L^{N-1}(z)\dots L^{-N+1}(z)L^{-N}(z).$$

It is easy to show that the regularized limit

$$L_1(z) = \lim_{N \to \infty} L_1^N(z)$$

satisfies (2).

For n=1 formulae (3)-(5) are nothing but Euler's formulae for $\sin u$, so that

$$L_1(z) = \frac{\sin \pi(z+B)}{\sin \pi(z+\mu)}.$$

PROBLEM 4.5

We calculated $L_1(z)$ for n=2 in [2]. In this case $A=\operatorname{diag}(1,-1)$ and

$$B = \begin{pmatrix} S_3 & S_- \\ S_+ & -S_3 \end{pmatrix}$$

so that trace(B) = 0.

The limit in (5) is defined as follows

$$\lim_{N\to\infty}' L_1^N(z) = \lim_{N\to\infty} (A^{-N}D_N L_1^N(z)D_{-N}A^N),$$

where

$$D_N = \begin{pmatrix} N^{S_3} & 0 \\ 0 & N^{-S_3} \end{pmatrix}.$$

The limit matrix $L_1(z)$ has a form

$$L_1(z) = W^{-1}\tilde{L}_1(z)W,$$

$$W = \begin{pmatrix} h(S_3)^{-1} & 0 \\ 0 & h(S_3) \end{pmatrix}, \quad h(z) = \sqrt{\frac{\Gamma(1+R-z)\Gamma(1-R-z)}{\pi^2(z^2-R^2)}} e^{-z},$$

$$\tilde{L}_1(z) = \frac{1}{\sin \pi(z+\mu)} \begin{pmatrix} \sin \pi(z+S_3), & S_-\sqrt{\frac{\sin^2 \pi S_3 - \sin^2 \pi R}{\pi^2(S_3^2-R^2)}} \\ S_+\sqrt{\frac{\sin^2 \pi S_3 - \sin^2 \pi R}{\pi^2(S_3^2-R^2)}} & \sin \pi(z-S_3) \end{pmatrix},$$

where $R^2 = S_3^2 + S_+ S_-$.

We pose as a Problem the explicit calculation of the limit in (5) for every n in terms of known special functions. REFERENCES

- Faddeev L., Integrable models in 1+1 dimensional quantum field theory, preprint, CEN-SACLAY, S. Ph. T. /82/76.
 Faddeev L. D., Reshetihin N. Yu., Hamiltonian structures for integrable fields theory models, Teor. Mat. Fiz. 57 (1983), no. 1, 323-343. (Russian)

ST.PETERSBURG BRANCH OF STEKLOV MATHEMATICAL INSTITUTE FONTANKA 27 ST. PETERSBURG, 191011

DEPARTMENT OF MATHEMATICS HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS 02138